版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省部分重点中学2025届数学高二上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知斜三棱柱所有棱长均为2,,点、满足,,则()A. B.C.2 D.2.某工厂节能降耗技术改造后,在生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如下表,现发现表中有个数据看不清,已知回归直线方程为=6.3x+6.8,下列说法正确的是()x23456y1925★4044A.看不清的数据★的值为33B.回归系数6.3的含义是产量每增加1吨,相应的生产能耗实际增加6.3吨C.据此模型预测产量为8吨时,相应的生产能耗为50.9吨D.回归直线=6.3x+6.8恰好经过样本点(4,★)3.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.124.给出如下四个命题正确的是()①方程表示的图形是圆;②椭圆的离心率;③抛物线的准线方程是;④双曲线的渐近线方程是A.③ B.①③C.①④ D.②③④5.抛物线的焦点是A. B.C. D.6.一组“城市平安建设”的满意度测评结果,,…,的平均数为116分,则,,…,,116的()A.平均数变小 B.平均数不变C.标准差不变 D.标准差变大7.如图,,是平面上两点,且,图中的一系列圆是圆心分别为,的两组同心圆,每组同心圆的半径分别是1,2,3,…,A,B,C,D,E是图中两组同心圆的部分公共点.若点A在以,为焦点的椭圆M上,则()A.点B和C都在椭圆M上 B.点C和D都在椭圆M上C.点D和E都在椭圆M上 D.点E和B都在椭圆M上8.已知,条件,条件,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列10.下列求导运算正确的是()A. B.C. D.11.在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A. B.C. D.12.过抛物线C:的准线上任意一点作抛物线的切线,切点为,若在轴上存在定点,使得恒成立,则点的坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的程序框图,则输出的结果________14.已知函数,则曲线在点处的切线方程为______15.已知双曲线C的方程为,,,双曲线C上存在一点P,使得,则实数a的最大值为___________.16.已知抛物线与直线交于D,E两点,若(点O为坐标原点)的面积为16,则抛物线的方程为______;过焦点F的直线l与抛物线交于A,B两点,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.18.(12分)已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.20.(12分)已知双曲线与椭圆有公共焦点,且它的一条渐近线方程为.(1)求椭圆的焦点坐标;(2)求双曲线的标准方程21.(12分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.22.(10分)设函数(1)若,求函数的单调区间;(2)若函数有两个不同的零点,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以向量为基底向量,则,根据条件由向量的数量积的运算性质,两边平方可得答案.【详解】以向量为基底向量,所以所以故选:D2、D【解析】根据回归直线方程的性质和应用,对每个选项进行逐一分析,即可判断和选择.【详解】对A:因为,将代入,故,∴,故A错误;对,回归系数6.3的含义是产量每增加1吨,相应的生产能耗大约增加6.3吨,故错误;对,当时,,故错误;对,因为,故必经过,故正确.故选:.3、B【解析】根据椭圆中的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.4、A【解析】对选项①,根据圆一般方程求解即可判断①错误,对选项②,求出椭圆离心率即可判断②错误,对③,求出抛物线渐近线即可判断③正确,对④,求出双曲线渐近线方程即可判断④错误。【详解】对于①选项,,,故①错误;对于②选项,由题知,所以,所以离心率,故②错误;对于③选项,抛物线化为标准形式得抛物线,故准线方程是,故③正确;对于④选项,双曲线化为标准形式得,所以,焦点在轴上,故渐近线方程是,故④错误.故选:A5、D【解析】先判断焦点的位置,再从标准型中找出即得焦点坐标.【详解】焦点在轴上,又,故焦点坐标为,故选D.【点睛】求圆锥曲线的焦点坐标,首先要把圆锥曲线的方程整理为标准方程,从而得到焦点的位置和焦点的坐标.6、B【解析】利用平均数、方差的定义和性质直接求出,,…,,116的平均数、方差从而可得答案.【详解】,,…,的平均数为116分,则,,…,,116的平均数为设,,…,的方差为则所以则,,…,,116的方差为所以,,…,,116的平均数不变,方差变小.标准差变小.故选:B7、C【解析】根据椭圆的定义判断即可求解.【详解】因为,所以椭圆M中,因为,,,,所以D,E在椭圆M上.故选:C8、A【解析】利用“1”的妙用探讨命题“若p则q”的真假,取特殊值计算说明“若q则p”的真假即可判断作答.【详解】因为,由得:,则,当且仅当,即时取等号,因此,,因,,由,取,则,,即,,所以是的充分不必要条件.故选:A9、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题10、B【解析】根据基本初等函数的导数和求导法则判断.【详解】,,,,只有B正确.故选:B.【点睛】本题考查基本初等函数的导数公式,考查导数的运算法则,属于基础题.11、C【解析】分析得出,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成的角.【详解】由题意可知,,因为,,则,,因为平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则点、、、,,,,因此,异面直线与所成的角为.故选:C.12、D【解析】设切点,点,联立直线的方程和抛物线C的准线方程可得,将问题转化为对任意点恒成立,可得,解出,从而求出答案【详解】设切点,点由题意,抛物线C的准线,且由,得,则直线的方程为,即,联立令,得由题意知,对任意点恒成立,也就是对任意点恒成立因为,,则,即对任意实数恒成立,所以,即,所以,故选:D【点睛】一般表示抛物线的切线方程时可将抛物线方程转化为函数解析式,可利用导数的几何意义求解切线斜率,再代入计算.二、填空题:本题共4小题,每小题5分,共20分。13、132【解析】根据程序框图模拟程序运行,确定变量值的变化可得结论【详解】程序运行时,变量值变化如下:,判断循环条件,满足,,;判断循环条件,满足,,;判断循环条件,不满足,输出故答案为:13214、【解析】先求出,求出导函数及,进而求出切线方程.【详解】∵,∴,又,∴在处的切线方程为,即故答案为:15、2【解析】设出,根据条件推出在圆上运动,根据题意要使双曲线和圆有交点,则得答案.【详解】设点,由得:,所以,化简得:,即满足条件的点在圆上运动,又点存在于上,故双曲线与圆有交点,则,即实数a的最大值为2,故答案为:216、①.②.1【解析】利用的面积列方程,化简求得的值,从而求得抛物线方程.将的斜率分成存在和不存在两种情况进行分类讨论,结合根与系数关系求得.【详解】依题意可知,,所以,解得.所以抛物线方程为.焦点,当直线的斜率不存在时,直线的方程为,,即,此时.当直线的斜率存在且不为时,设直线的方程为,由消去并化简得,,设,则,结合抛物线的定义可知.故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离,∴,即△OAB的面积为.18、(1)答案见解析(2)【解析】(1)首先由,,成等比数列,求出,再由①或②或③求出数列的首项和公差,即可求得的通项公式;(2)求得的通项公式,结合裂项相消法求得.【小问1详解】设等差数列的公差为,由,,成等比数列,可得,即,∵,故,选①:由,可得,解得,所以数列的通项公式为选②:由,可得,即,所以,解得,所以;选③:由,可得,即,所以,解得,所以;【小问2详解】由(1)可得,所以.19、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,分别求得平面的一个法向量和平面的一个法向量,设二面角的大小为,由求解.【小问1详解】解:因为,,,所以,,又,所以是等腰直角三角形,即,所以.由平面几何知识易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小问2详解】由(1)知,,两两垂直,以,,的方向分别为,,轴的正方向,建立如图所示的空间直角坐标系,设,则,,,,F(1,0,0),则,,设平面的一个法向量为,由,得,取,则.由,,,得平面,所以平面的一个法向量为,设二面角的大小为,则,由图可知二面角为钝二面角,所以二面角的余弦值为.20、(1);(2).【解析】(1)由椭圆方程及其参数关系求出参数c,即可得焦点坐标.(2)由渐近线及焦点坐标,可设双曲线方程为,再由双曲线参数关系求出参数,即可得双曲线标准方程.【小问1详解】由题设,,又,所以椭圆的焦点坐标为.【小问2详解】由题设,令双曲线为,由(1)知:,可得,所以双曲线的标准方程为.21、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(2)求出与的相关系数,通过比较,可得用反比例函数模型拟合效果更好,然后将代入回归方程中可求结果(3)利用已知数据求出样本标准差s,从而可得非原料成本y服从正态分布,再计算,然后各个数据是否在此范围内,从而可得结论【小问1详解】令,则可转化为,因为,所以,所以,所以,所以y关于x的回归方程为【小问2详解】与的相关系数为因为,所以用反比例函数模型拟合效果更好,把代入回归方程得(元),所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程设计合同标的工程质量
- 消费型股东合作的协议书 2篇
- 2024年二手车交易中的物流配送协议3篇
- 2024年度室内浮雕施工合同3篇
- 二零二四年度二手集装箱买卖合同的验收标准3篇
- 2024年度居间服务合同-工程安全监督3篇
- 2024年度东莞市环保工程承包合同
- 重阳节社区老人安全知识培训
- 2024年度建筑项目安全生产责任保险合同
- 六下20古诗两首课件
- 《汉语拼音jqx》课件(20张ppt)
- 煤炭运输管理制度
- 腹腔镜腹壁切口疝修补术
- 外墙保温装饰一体板施工方案
- 颅内压增高-课件
- 国有资产交易法律实务与疑难问题
- 2023年福建省莆田市初中毕业班质量检查语文试卷【含答案】
- STEAM教育,什么是steam课件
- 烟机设备修理基础知识考试复习题库大全-上(单选题汇总)
- 余华《活着》读书分享PPT
- 硬核赢创新智慧树知到答案章节测试2023年山东大学
评论
0/150
提交评论