![2025届山东省新泰中学高一上数学期末调研模拟试题含解析_第1页](http://file4.renrendoc.com/view7/M00/1B/27/wKhkGWcJYsCAegUOAAGa0TMvg9Y165.jpg)
![2025届山东省新泰中学高一上数学期末调研模拟试题含解析_第2页](http://file4.renrendoc.com/view7/M00/1B/27/wKhkGWcJYsCAegUOAAGa0TMvg9Y1652.jpg)
![2025届山东省新泰中学高一上数学期末调研模拟试题含解析_第3页](http://file4.renrendoc.com/view7/M00/1B/27/wKhkGWcJYsCAegUOAAGa0TMvg9Y1653.jpg)
![2025届山东省新泰中学高一上数学期末调研模拟试题含解析_第4页](http://file4.renrendoc.com/view7/M00/1B/27/wKhkGWcJYsCAegUOAAGa0TMvg9Y1654.jpg)
![2025届山东省新泰中学高一上数学期末调研模拟试题含解析_第5页](http://file4.renrendoc.com/view7/M00/1B/27/wKhkGWcJYsCAegUOAAGa0TMvg9Y1655.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省新泰中学高一上数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图,则()A. B.C. D.2.为了得到函数的图象,只要把函数图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变3.将函数图象向左平移个单位,所得函数图象的一个对称中心是()A. B.C. D.4.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.5.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是A.3 B.4C.5 D.76.下列函数是奇函数且在定义域内是增函数的是()A. B.C. D.7.已知函数(且)图像经过定点A,且点A在角的终边上,则()A. B.C.7 D.8.已知集合,且,则的值可能为()A. B.C.0 D.19.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数10.下列函数在其定义域上既是奇函数又是减函数的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知不等式的解集是__________.12.已知集合,则集合的子集个数为___________.13.函数的定义域为________.14.已知函数f(x)是定义在R上的奇函数,当时,,则函数的零点个数为______15.函数f(x)=cos的图象向右平移个单位长度,得到函数的图象,则函数的解析式为_______,函数的值域是________16.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求函数的最小正周期和对称轴方程;(2)求函数在上的最大值与最小值及相对应的的值.18.已知集合,.(1)若,求;(2)在①,②,③,这三个条件中任选一个作为条件,求实数的取值范围.(注意:如果选择多个条件分别解答,则按第一个解答计分)19.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本35917…年利润1234…给出以下3个函数模型:①;②(,且);③(,且).(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.20.已知函数(且).(1)当时,,求的取值范围;(2)若在上最小值大于1,求的取值范围.21.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是,其中的振幅为2,且经过点.(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)将函数图象上各点的横坐标变为原来的倍,纵坐标不变得到函数的图象.若锐角满足,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【点睛】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.2、B【解析】直接利用三角函数伸缩变换法则得到答案.【详解】为了得到函数的图象,只需把函数的图象上所有的点横坐标缩短到原来的倍,纵坐标不变.故选:B3、D【解析】先由函数平移得解析式,再令,结合选项即可得解.【详解】将函数图象向左平移个单位,可得.令,解得.当时,有对称中心.故选D.【点睛】本题主要考查了函数的图像平移及正弦型三角函数的对称中心的求解,考查了学生的运算能力,属于基础题.4、B【解析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B.5、D【解析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是2,2.5,3,5,7,7.5,8,共计7个.故选D点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点.6、B【解析】根据指数函数、正切函数的性质,结合奇函数和单调性的性质进行逐一判断即可.【详解】A:当时,,所以该函数不是奇函数,不符合题意;B:由,设,因为,所以该函数是奇函数,,函数是上的增函数,所以函数是上的增函数,因此符合题意;C:当时,,当时,,显然不符合增函数的性质,故不符合题意;D:当时,,显然不符合增函数的性质,故不符合题意,故选:B7、B【解析】令指数为零,即可求出函数过定点,再根据三角函数的定义求出,最后根据同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:令解得,所以,故函数(且)过定点,所以由三角函数定义得,所以,故选:B8、C【解析】化简集合得范围,结合判断四个选项即可【详解】集合,四个选项中,只有,故选:C【点睛】本题考查元素与集合的关系,属于基础题9、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.10、A【解析】选项是非奇非偶函数,选项是奇函数但在定义域的每个区间上是减函数,不能说是定义域上的减函数,故符合题意.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:12、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.13、【解析】根据开偶次方被开方数非负数,结合对数函数的定义域得到不等式组,解出即可.【详解】函数定义域满足:解得所以函数的定义域为故答案为:【点睛】本题考查了求函数的定义域问题,考查对数函数的性质,属于基础题.14、10【解析】将原函数的零点转化为方程或的根,再作出函数y=f(x)的图象,借助图象即可判断作答.【详解】函数的零点即方程的根,亦即或的根,画出函数y=f(x)的图象和直线,如图所示,观察图象得:函数y=f(x)的图象与x轴,直线各有5个交点,则方程有5个根,方程也有5个根,所以函数的零点有10个.故答案为:1015、①.②.【解析】由题意利用函数的图象变换规律求得的解析式,可得的解析式,再根据余弦函数的值域,二次函数的性质,求得的值域【详解】函数的图象向右平移个单位长度,得到函数的图象,函数,,故当时,取得最大值为;当时,取得最小值为,故的值域为,,故答案为:;,16、【解析】利用函数的图象变换规律,先放缩变换,再平移变换,从而可得答案【详解】将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数的图象;再将的图象向左平移个单位,得到的图象对应的解析式是的图象,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)时,最大值是2,时,最小值是1【解析】(1)利用正弦函数的性质求解;(2)由正弦函数的性质求解.【小问1详解】解:的最小正周期为,由,得,所以函数的对称轴方程为;【小问2详解】由(1)知,时,,则,即时,,,即时,,的最大值是2,此时,的最小值是1,此时.18、(1);(2).【解析】(1)根据并集的概念和运算,求得.(2)三个条件都是表示,由此列不等式组,解不等式组求得的取值范围.【详解】(1)当时,,所以.(2)三个条件、、都表示,所以,解得,所以实数的取值范围为【点睛】本小题主要考查集合并集的概念和运算,考查根据集合的包含关系求参数的取值范围,属于基础题.19、(1)可用③来描述x,y之间的关系,(2)该企业要考虑转型.【解析】(1)由年利润是随着投资成本的递增而递增,可知①不符合,把,分别代入②③,求出函数解析式,再把代入所求的解析式中,若,则选择此模型;(2)由题知,则x>65,再由与比较,可作出判断.【小问1详解】由表格中的数据可知,年利润是随着投资成本的递增而递增,而①是单调递减,所以不符合题意;将,代入(,且),得,解得,∴.当时,,不符合题意;将,代入(,且),得,解得,∴.当时,;当时,.故可用③来描述x,y之间的关系.【小问2详解】由题知,解得∵年利润,∴该企业要考虑转型.20、(1).(2).【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求解;(2)由在定义域内单调递减,分类讨论,即可求解函数的最大值,得到答案.【详解】(1)当时,,,得.(2)在定义域内单调递减,当时,函数在上单调递减,,得.当时,函数在上单调递增,,不成立.综上:.【点睛】本题主要考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租房整栋承包合同
- 签空白合同合肥美湖置业被指欺诈
- 股权协议转让合同
- 2025手房网签合同有效期
- 外贸代理合同
- 2025演出活动报批常规合同
- 碎石材料采购合同范本
- 2025二手商铺按揭购买合同
- 2025年防静电垫项目规划申请报告模板
- 2025年车挂项目提案报告模板
- 2025年新能源汽车销售佣金返点合同范本6篇
- 2025-2030年中国配电变压器市场未来发展趋势及前景调研分析报告
- GB/T 45120-2024道路车辆48 V供电电压电气要求及试验
- 2025年上海市嘉定区中考英语一模试卷
- 润滑油、润滑脂培训课件
- 2025年中核财务有限责任公司招聘笔试参考题库含答案解析
- 华中师大一附中2024-2025学年度上学期高三年级第二次考试数学试题(含解析)
- 健康管理-理论知识复习测试卷含答案
- 成人脑室外引流护理-中华护理学会团体 标准
- JGJ106-建筑基桩检测技术规范
- 高技能公共实训基地建设方案
评论
0/150
提交评论