版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省双峰县一中2025届高二上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的准线方程为,则实数的值为()A. B.C. D.2.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.3.已知函数f(x)的定义域为[-1,5],其部分自变量与函数值的对应情况如下表:x-10245f(x)312.513f(x)的导函数的图象如图所示.给出下列四个结论:①f(x)在区间[-1,0]上单调递增;②f(x)有2个极大值点;③f(x)的值域为[1,3];④如果x∈[t,5]时,f(x)的最小值是1,那么t的最大值为4其中,所有正确结论的序号是()A.③ B.①④C.②③ D.③④4.已知的三个顶点是,,,则边上的高所在的直线方程为()A. B.C. D.5.在等差数列中,为其前项和,若.则()A. B.C. D.6.设,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在等比数列{an}中,a1=8,a4=64,则a3等于()A.16 B.16或-16C.32 D.32或-328.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.9.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)10.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和11.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支12.在等比数列中,,,则等于()A. B.5C. D.9二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线焦点的直线交抛物线于A,B两点,若线段AB中点的纵坐标为4,则线段AB的长度为___________.14.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy中,设军营所在平面区域为{(x,y)|x2+y2≤},河岸线所在直线方程为x+2y-4=0.假定将军从点P(,)处出发,只要到达军营所在区域即回到军营,当将军选择最短路程时,饮马点A的纵坐标为______.最短总路程为______15.若关于的不等式恒成立,则实数的取值范围是______.16.在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆.(1)若直线与圆相交于两点,弦的中点为,求直线的方程;(2)若斜率为1的直线被圆截得的弦为,以为直径的圆经过圆的圆心,求直线的方程.18.(12分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.19.(12分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.20.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形,(1)证明:是的中点;(2)求二面角的大小21.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.22.(10分)已知,是椭圆:的左、右焦点,离心率为,点A在椭圆C上,且的周长为.(1)求椭圆C的方程;(2)若B为椭圆C上顶点,过的直线与椭圆C交于两个不同点P、Q,直线BP与x轴交于点M,直线BQ与x轴交于点N,判断是否为定值.若是,求出定值,若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B2、B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.3、D【解析】直接利用函数的导函数的图像,进一步画出函数的图像,进一步利用函数的性质的应用求出函数的单调区间,函数的极值和端点值可得结论【详解】解:由f(x)的导函数的图像,画出的图像,如图所示,对于①,在区间上单调递减,所以①错误,对于②,有1个极大值点,2个极小值点,所以②错误,对于③,根据函数的极值和端点值可知的值域为,所以③正确,对于④,如果x∈[t,5]时,由图像可知,当f(x)的最小值是1时,t的最大值为4,所以④正确,故选:D4、B【解析】求出边上的高所在的直线的斜率,再利用点斜式方程可得答案.【详解】因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.故选:B.5、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.6、B【解析】,,所以是必要不充分条件,故选B.考点:1.指、对数函数的性质;2.充分条件与必要条件.7、C【解析】首先根据a4=a1q3,求得q=2,再由a3=即可得解.【详解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故选:C8、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C9、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D10、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C11、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A12、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】由焦点弦公式和中点坐标公式可得.详解】设,则,即,.故答案为:914、①.②.【解析】求出P(,)关于直线x+2y4=0对称点P'的坐标,再求出线段OP'与直线x+2y-4=0的交点A,再利用圆的几何性质可得结果.【详解】设P(,)关于直线x+2y4=0的对称点为P'(m,n),则解得因为从点P到军营总路程最短,所以A为线段OP'与直线x+2y4=0的交点,联立得y=(42y),解得y=.所以“将军饮马”的最短总路程为=,故答案为,.【点睛】本题主要考查对称问题以及圆的几何性质,属于中档题.解析几何中点对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.15、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.16、甲、乙、丙、丁【解析】结合对称性判断甲、乙的正确性;通过对比和与坐标轴在第一象限围成的图形面积来判断丙丁的正确性.【详解】对于甲:交换方程中和的位置得,所以曲线关于对称,甲回答正确.对于乙:和两个点都满足方程,所以曲线关于原点对称,乙回答正确.对于丙:直线与坐标轴在第一象限围成的图形面积为,,,在第一象限,直线与曲线都满足,,,所以在第一象限,直线的图象在曲线的图象上方,所以,丙回答正确.对于丁:圆与坐标轴在第一象限围成的图形面积为,在第一象限,曲线与曲线都满足,,,,所以在第一象限,曲线的图象在曲线的图象下方,所以,丁回答正确.故答案为:甲、乙、丙、丁三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(或(2)或【解析】(1)由条件可得,由此可求直线的斜率,由点斜式求直线的方程;(2)由条件可求到直线的距离,利用待定系数法求直线的方程.【小问1详解】圆,得圆心,半径,直线的斜率:,设直线的斜率为,有,解得.所求直线的方程为:.(或【小问2详解】直线m被圆C截得的弦EF为直径的圆经过圆心C,∴圆心C到直线的距离为.设直线方䄇为,则解得或直线的方程为:或18、(1),.(2)5.【解析】(1)根据数列的递推公式探求出其项间关系,由此求出的公比,进而求得,的通项公式.(2)利用(1)的结论结合错位相减法求出,再将不等式变形,经推理计算得解.【小问1详解】解:设正项等比数列的公比为,当时,,即,则有,即,而,解得,又,则,所以,所以数列,的通项公式分别为:,.【小问2详解】解:由(1)知,,则,则,两式相减得:于是得,由得:,即,令,,显然,,,,,,由,解得,即数列在时是递增的,于是得当时,即,,则,所以不等式成立的n的最小值是5.19、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,利用空间向量求解【小问1详解】证明:因为,所以,所以∥,因为平面,平面,所以∥平面,因为平面,且平面面,所以∥,因为平面,平面,所以∥平面,【小问2详解】设的中点为,因为△PDC是等边三角形,所以,因为平面PDC⊥平面ABCD,且平面面,所以平面,因为平面,所以,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,则,所以,假设存在这样的点,由已知得,则,所以,因为平面,所以平面的一个法向量为,设平面的一个法向量为,则,令,则,则所以,整理得,解得(舍去),或,所以20、(1)证明见解析;(2).【解析】(1)根据正棱柱的性质,结合线面垂直的判定定理、直角三角形的性质、正三角形的性质进行证明即可;(2)根据线面垂直的判定定理和性质,结合二面角的定义进行求解即可.【小问1详解】证明:在正三棱柱中,平面,平面,则,又是以为直角顶点的等腰直角三角形,则,且,平面,故平面,而平面,所以,又为正三角形,所以为的中点;【小问2详解】在正中,取的中点为,则,又平面,则,且,平面,故平面,取的中点为,且的中点为,则,故平面,而平面,所以,在等腰直角中,取的中点为,则,,平面,所以平面,而平面,所以,故为二面角平面角,又,则,,所以在中,,即:,故二面角的大小为.:21、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购合同制定高效协作的关键3篇
- 采购合同销售合同的修改与终止3篇
- 采购合同评审表的解答与指导3篇
- 2024年度离职员工离职后劳动合同解除及权利义务确认协议3篇
- 2024年度美术教师跨学科教育项目聘任合同模板3篇
- 2024年智慧城市建设项目增资扩股股权变更合同3篇
- 2024年物业管理服务外包合同(含智能化系统)
- 2024年度新型设备融资租赁抵押担保合同诉状2篇
- 2024年服务外包合同:软件开发
- 2024年度智能照明系统安装施工合同协议书3篇
- 2023-2024学年贵州省贵阳市南明区四年级数学第一学期期末含答案
- 金融服务营销PPT完整全套教学课件
- 经济博弈论(谢织予)课后答案及补充习题答案
- 国开电大2022年春季期末考试《园产品贮藏技术》试题(试卷代号2713)
- 有机波谱分析考试题库及答案1
- 2023海南省图书馆公开招聘财政定额补贴人员15人(一)模拟备考预测(共1000题含答案解析)综合试卷
- 导游考试指南:一个月过北京导游考试
- 跨境电商平台认知Lazada
- 办公楼VRV多联空调与中央空调系统方案比较
- GB/T 33609-2017软质泡沫聚合材料滞后损失试验方法
- 现当代文学习题(北大、复旦版)
评论
0/150
提交评论