2025届学年湖南省邵阳市隆回县高二上数学期末经典试题含解析_第1页
2025届学年湖南省邵阳市隆回县高二上数学期末经典试题含解析_第2页
2025届学年湖南省邵阳市隆回县高二上数学期末经典试题含解析_第3页
2025届学年湖南省邵阳市隆回县高二上数学期末经典试题含解析_第4页
2025届学年湖南省邵阳市隆回县高二上数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届学年湖南省邵阳市隆回县高二上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.2.方程与的曲线在同一坐标系中的示意图应是()A. B.C. D.3.已知函数,若函数有3个零点,则实数的取值范围是()A. B.C. D.4.已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A. B.C. D.5.已知直线过点,,则该直线的倾斜角是()A. B.C. D.6.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.7.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.128.已知直线的一个方向向量为,则直线的倾斜角为()A. B.C. D.9.椭圆的一个焦点坐标为,则实数m的值为()A.2 B.4C. D.10.已知数列中,,当时,,设,则数列的通项公式为()A. B.C. D.11.已知双曲线的对称轴为坐标轴,一条渐近线为,则双曲线的离心率为A.或 B.或C.或 D.或12.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.中国三大名楼之一的黄鹤楼因其独特的建筑结构而闻名,其外观有五层而实际上内部有九层,隐喻“九五至尊”之意,为迎接2022年春节的到来,有网友建议在黄鹤楼内部挂灯笼进行装饰,若在黄鹤楼内部九层塔楼共挂1533盏灯笼,且相邻的两层中,下一层的灯笼数是上一层灯笼数的两倍,则内部塔楼的顶层应挂______盏灯笼14.《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为___________尺.15.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是一个半径为2的半圆,则该几何体的体积为________.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.5三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点是椭圆E:一点,且椭圆的离心率为.(1)求此椭圆E方程;(2)设椭圆的左顶点为A,过点A向上作一射线交椭圆E于点B,以AB为边作矩形ABCD,使得对边CD经过椭圆中心O.(i)求矩形ABCD面积的最大值;(ii)问:矩形ABCD能否为正方形?若能,求出直线AB的方程;若不能,请说明理由.18.(12分)已知等差数列的公差,前3项和,且成等比数列.(1)求数列的通项公式;(2)若,求数列的前项和.19.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.20.(12分)求函数在区间上的最大值和最小值21.(12分)如图,正方体的棱长为2,点,分别在棱,上运动,且.(1)求证:;(2)求三棱锥的体积的最大值:(3)当,分别是棱,的中点时,求平面与平面的夹角的正弦值.22.(10分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B2、A【解析】方程即,表示抛物线,方程表示椭圆或双曲线,当和同号时,抛物线开口向左,方程表示焦点在轴的椭圆,无符合条件的选项;当和异号时,抛物线开口向右,方程表示双曲线,本题选择A选项.3、B【解析】构造,通过求导,研究函数的单调性及极值,最值,画出函数图象,数形结合求出实数的取值范围.【详解】令,即,令,当时,,,令得:或,结合,所以,令得:,结合得:,所以在处取得极大值,也是最大值,,当时,,且,当时,,则恒成立,单调递增,且当时,,当时,,画出的图象,如下图:要想有3个零点,则故选:B4、A【解析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线的垂线交抛物线于点,交圆于,最小值等于圆心到准线的距离减去半径4-1=.考点:1.抛物线的定义;2.圆中的最值问题;5、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C6、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A7、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B8、A【解析】由直线斜率与方向向量的关系算出斜率,然后可得.【详解】记直线的倾斜角为,由题知,又,所以,即.故选:A9、C【解析】由焦点坐标得到,求解即可.【详解】根据焦点坐标可知,椭圆焦点在y轴上,所以有,解得故选:C.10、A【解析】根据递推关系式得到,进而利用累加法可求得结果【详解】数列中,,当时,,,,,且,,故选:A11、B【解析】分双曲线的焦点在轴上和在轴上两种情况讨论,求出的值,利用可求得双曲线的离心率的值.【详解】若焦点在轴上,则有,则双曲线的离心率为;若焦点在轴上,则有,则,则双曲线的离心率为.综上所述,双曲线的离心率为或.故选:B.【点睛】本题考查双曲线离心率的求解,在双曲线的焦点位置不确定的情况下,要对双曲线的焦点位置进行分类讨论,考查计算能力,属于基础题.12、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件,各层灯笼数从上到下排成一列构成等比数列,利用等比数列前n项和公式计算作答.【详解】依题意,各层灯笼数从上到下排成一列构成等比数列,公比,前9项和为1533,于是得,解得,所以内部塔楼的顶层应挂3盏灯笼.故答案为:314、【解析】利用等差数列的通项公式求出首项和公差,然后求出其中某一项.【详解】解:由题意得从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,设其公差为,解得故立夏的日影子长为尺.故答案为:15、【解析】根据圆锥的侧面展开图是一个半径为2的半圆,由,求得底面半径,进而得到高,再利用锥体的体积公式求解.【详解】设圆锥的母线长为l,高为h,底面半径为r,因为圆锥的侧面展开图是一个半径为2的半圆,所以,解得,所以,所以圆锥的体积为:,故该几何体的体积为,故答案为:16、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(i);(ii).【解析】(1)根据给定条件列出关于a,b的方程组,解方程组代入得解.(2)(i)设直线AB方程,与椭圆方程联立求出线段AB长,再求出原点O到直线AB距离列出矩形面积求解即可;(ii)由(i)及列出方程,由方程解的情况即可判断计算作答.【小问1详解】令椭圆半焦距为c,依题意,,解得,所以椭圆E的方程为:.【小问2详解】(i)由(1)知,,设直线AB的斜率为,则直线AB的方程为:,由消去y并整理得:,点的横坐标,则点的横坐标有:,解得,则有,因矩形的边CD过原点O,则,因此,矩形的面积,当且仅当,即时取“=”,所以矩形ABCD面积的最大值是.(ii)假定矩形ABCD能成为正方形,则,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成为正方形,此时,直线AB的方程为.【点睛】思路点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率或点的横、纵坐标等.而目标函数的最值可以通过二次函数或基本不等式或导数等求得.18、(1)(2)【解析】(1)由,且成等比数列列式求解出和,然后写出;(2)由,用错位相减法求和即可.【详解】(1)∵,∴①又∵成等比数列,∴,②∵,由①②解得:,,∴(2)∵,,∴两式相减,得∴【点睛】本题考查了等差数列基本量的计算,错位相减法求和,属于中档题.19、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.20、,【解析】先求导函数,再根据导函数得到单调区间,比较极值和端点值,即可得到最大值和最小值.【详解】解:依题意,,令,得或,所以函数在和上单调递增,在上单调递减,又,,,所以,21、(1)证明见解析(2)(3)【解析】(1)向量垂直的充要条件是内积为零,建立空间直角坐标系,计算向量内积;(2)利用一元二次函数,求解体积的最大值;(3)利用平面的法向量求二面角的正弦值.【小问1详解】如下图所示,以原点,,,所在直线分别轴、轴、轴,建立空间直角坐标系,设,则,,,,则,,因为,所以,即.【小问2详解】因为,所以故的最大值为【小问3详解】设平面的一个法向量,因为此时,,所以由得取,得,,又可取平面的一个法向量,所以故平面与平面的夹角的正弦值.22、(1);(2)存在,最大距离为.,理由见解析【解析】(1)根据离心率及短轴长求椭圆参数,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论