版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市闸北区2025届高二上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.2.是双曲线:上一点,已知,则的值()A. B.C.或 D.3.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.104.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.5.若直线a不平行于平面,则下列结论正确的是()A.内的所有直线均与直线a异面 B.直线a与平面有公共点C.内不存在与a平行的直线 D.内的直线均与a相交6.我国新冠肺炎疫情防控进入常态化,各地有序进行疫苗接种工作,下面是我国甲、乙两地连续11天的疫苗接种指数折线图,根据该折线图,下列说法不正确的是()A.这11天甲地指数和乙地指数均有增有减B.第3天至第11天,甲地指数和乙地指数都超过80%C.在这11天期间,乙地指数的增量大于甲地指数的增量D.第9天至第11天,乙地指数的增量大于甲地指数的增量7.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.8.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题9.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上10.已知直线,两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则11.已知函数在处有极小值,则c的值为()A.2 B.4C.6 D.2或612.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是数列的前n项和,且,则________;数列的通项公式________14.如图所示,在正方体中,点是底面内(含边界)的一点,且平面,则异面直线与所成角的取值范围为____________15.已知点F是抛物线的焦点,点,点P为抛物线上的任意一点,则的最小值为_________.16.已知复数对应的点在复平面第一象限内,甲、乙、丙三人对复数的陈述如下为虚数单位:甲:;乙:;丙:,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,平面,,,为的中点.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.18.(12分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.19.(12分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.20.(12分)某微小企业员工的年龄分布茎叶图如图所示:(1)求该公司员工年龄的极差和第25百分位数;(2)从该公司员工中随机抽取一位,记所抽取员工年龄在区间内为事件,所抽取员工年龄在区间内为事件,判断事件与是否互相独立,并说明理由;21.(12分)已知函数(1)若,求曲线在处的切线方程(2)讨论函数的单调性22.(10分)已知椭圆的离心率为,椭圆过点.(1)求椭圆C的方程;(2)过点的直线交椭圆于M、N两点,已知直线MA,NA分别交直线于点P,Q,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.2、B【解析】根据双曲线定义,结合双曲线上的点到焦点的距离的取值范围,即可求解.【详解】双曲线方程为:,是双曲线:上一点,,,或,又,.故选:B3、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C4、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.5、B【解析】根据题意可得直线a与平面相交或在平面内,结合线面的位置关系依次判断选项即可.【详解】若直线a不平行与平面,则直线a与平面相交或在平面内.A:内的所有直线均与直线a异面错误,也可能相交,故A错误;B:直线a与平面相交或直线a在平面内都有公共点,故B正确;C:平面内不存在与a平行的直线,错误,当直线a在平面内就存在与a平行的直线,故C错误;D:平面内的直线均与a相交,错误,也可能异面,故D错误.故选:B6、C【解析】由折线图逐项分析得到答案.【详解】对于选项A,从折线图中可以直接观察出甲地和乙地的指数有增有减,故选项A正确;对于选项B,从第3天至第11天,甲地指数和乙地指数都超过80%,故选项B正确;对于选项C,从折线图上可以看出这11天甲的增量大于乙的增量,故选项C错误;对于选项D,从折线图上可以看出第9天至第11天,乙地指数的增量大于甲地指数的增量,故D正确;故选:C.7、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.8、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.9、B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力10、A【解析】根据线面、面面位置关系有关知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,根据面面垂直的判定定理可知,A选项正确,对于B选项,当,时,和可能相交,B选项错误,对于C选项,当,时,可能含于,C选项错误,对于D选项,当,时,可能含于,D选项错误.故选:A11、A【解析】根据求出c,进而得到函数的单调性,然后根据极小值的定义判断答案.【详解】由题意,,则,所以或.若c=2,则,时,,单调递增,时,,单调递减,时,,单调递增.函数在处有极小值,满足题意;若c=6,则,函数R上单调递增,不合题意.综上:c=2.故选:A.12、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】当时,,推导出,从而数列是从第二项起,公比为的等比数列,进而能求出数列的通项公式,即可求得答案.【详解】为数列的前项和,①时,②①②,得:,,,,数列的通项公式为.故答案为:;.14、【解析】过作平面平面,得到在与平面的交线上,连接,证得平面平面,得到点在上,设正方体的棱长为,且,得到,,设与所成角为,利用向量的夹角公式,求得,结合二次函数的性质,即可求解.【详解】过作平面平面,因为点是底面内(含边界)的一点,且平面,则平面,即在与平面的交线上,连接,因为且,所以四边形是平行四边形,所以,平面,同理可证平面,所以平面平面,则平面即为,点在线段上,设正方体的棱长为,且,则,,可得,设与所成角为,则,当时,取得最小值,最小值为,当或时,取得最大值,最大值为故答案为15、3【解析】根据抛物线的定义可求最小值.【详解】如图,过作抛物线准线的垂线,垂足为,连接,则,当且仅当共线时等号成立,故的最小值为3,故答案为:3.16、##【解析】设,则,然后分别求出甲,乙,丙对应的结论,先假设甲正确,则得出乙错误,丙正确,由此即可求解【详解】解:设,则,甲:由可得,则,乙:由可得:,丙:由可得,即,所以,若,则,则不成立,,则,解得或,所以甲,丙正确,乙错误,此时或,又复数对应的点在复平面第一象限内,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据勾股定理先证明,然后证明,进而通过线面垂直的判定定理证明问题;(2)建立空间直角坐标系,进而求出两个平面的法向量,然后通过空间向量的夹角公式求得答案.【小问1详解】∵,,∴,∴,∵平面,平面,∴,∵,,,∴平面.【小问2详解】以点为坐标原点,向量,的方向分别为,轴的正方向建立空间直角坐标系,则,,,,,设平面的法向量为,由,,有取,可得平面的一个法向量为.设平面的一个法向量为,由,,有取,可得平面的一个法向量为,所以,故平面与平面的夹角的正弦值为.18、(1)(2)①证明见解析;②【解析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为和,根据题意和得斜率存在且不等于;因为,所以设直线:,直线:;由,解得,所以,同理,.当时,,所以直线的方程为:,整理得,此时直线过定点;当时,直线的方程为:,此时直线过定点,故直线恒过定点.②根据题意得,,,,所以,当且仅当,即时等号成立,故的面积的最大值为:.【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题19、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【小问1详解】当时,的定义域为,.当时,,当时,,所以在上为增函数,在上为减函数.故有极大值,没有极小值.【小问2详解】当时,恒成立等价于对于任意恒成立.令,则.若,则,所以在上单调递减,所以,符合题意.若,所以在上单调递减,,符合题意.若,当时,,当时,,所以在上单调递减,在上单调递增,所以,不合题意.综上可知,a的取值范围为.【点睛】关键点点睛:本题考查了不等式恒成立问题,其关键是构造函数,通过讨论参数在不同取值范围时函数的单调性,求出函数的最值,解出参数的范围.必要时二次求导.20、(1)极差为;第25百分位数为(2)事件和相互独立,理由见解析【解析】(1)根据定义直接计算极差和百分位数得到答案.(2)计算得到,,,即,得到答案.【小问1详解】员工年龄的极差为,,故第25百分位数为.【小问2详解】,,,故,故事件和相互独立.21、(1)(2)答案见解析【解析】(1)根据导数的几何意义可求得切线斜率,结合切点可得切线方程;(2)求导后,分别在、和的情况下,根据的正负可得的单调性.【小问1详解】当时,,,,又,在处的切线方程为:,即;【小问2详解】,令,解得:,;当时,,在上单调递增;当时,若或,则;若,则;在和上单调递增,在上单调递减;当时,若或,则;若,则;在和上单调递增,在上单调递减;综上所述:当时,在上单调递增;当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减.22、(1)(2)1【解析】(1)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;(2)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校教师师德培训计划范文
- 8综合科工作计划
- 酒店月工作总结和计划
- 2024年大学科研室工作计划书
- 2024个人初中学习计划模板
- 明年工作计划总结
- 2024销售部工作计划范文
- 2024年度医院双拥工作计划模板年计划模板
- 临沂大学《数学物理方程A》2021-2022学年第一学期期末试卷
- 临沂大学《民族民间舞-维吾尔族舞蹈》2021-2022学年第一学期期末试卷
- 处方点评与合理用药-PPT课件
- 羊奶培训手册
- XX某管道工程通信线路光缆施工组织设计
- 《First aid》(课堂PPT)
- 《生命教育》教学大纲
- 初中义务教育英语新课标必背词汇表
- 2.3 肉质根的形成生理生理ppt课件
- 逻辑电平测试器的课程设计报告书
- 解析几何课件(吕林根+许子道第四版)
- 智能矿山设备项目融资计划书【模板范文】
- 曼昆《经济学原理》(微观)第五版测试题库 (16)
评论
0/150
提交评论