版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省洞口县第四中学数学高一上期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,若与共线,则等于()A. B.C. D.2.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是()A.回归直线一定经过样本点中心B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位C.年龄为10时,求得身高是,所以这名孩子的身高一定是D.身高与年龄成正相关关系3.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.24.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.5.下列四组函数中,表示同一函数的一组是()A. B.C. D.6.已知函数,则“”是“函数在区间上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若a>b,则下列各式正确的是()A. B.C. D.8.已知函数则满足的实数的取值范围是()A. B.C. D.9.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.410.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_______.12.已知函数,x0R,使得,则a=_________.13.函数(且)的图象恒过定点_________14.集合,用列举法可以表示为_________15.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.16.已知函数,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合M是满足下列性质的函数的全体:在定义域D内存在,使得成立函数是否属于集合M?说明理由;若函数属于集合M,试求实数k和b满足的约束条件;设函数属于集合M,求实数a的取值范围18.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分的平均数和方差;(2)从甲比赛得分在20分以下6场比赛中随机抽取2场进行失误分析,求抽到2场都不超过平均数的概率19.如图,在直三棱柱中,底面为等边三角形,.(Ⅰ)求三棱锥的体积;(Ⅱ)在线段上寻找一点,使得,请说明作法和理由.20.已知,求下列各式的值.(1);(2).21.已知非空集合,(1)当时,求;(2)若,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出,,再根据向量共线求解即可.【详解】由题得,因为与共线,.故选:A.【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.2、C【解析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;【详解】对于A,线性回归方程一定过样本中心点,故A正确;对于B,由于斜率是估计值,可知B正确;对于C,当时,求得身高是是估计值,故C错误;对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;故选:C【点睛】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题.3、A【解析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.4、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.5、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:6、A【解析】先由在区间上单调递增,求出的取值范围,再根据充分条件,必要条件的定义即可判断.【详解】解:的对称轴为:,若在上单调递增,则,即,在区间上单调递增,反之,在区间上单调递增,,故“”是“函数在区间上单调递增”的充分不必要条件.故选:A.7、A【解析】由不等式的基本性质,逐一检验即可【详解】因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a<-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选A【点睛】本题考查了不等式的基本性质,意在考查学生对该知识的理解掌握水平.8、B【解析】根据函数的解析式,得出函数的单调性,把不等式,转化为相应的不等式组,即可求解.【详解】由题意,函数,可得当时,,当时,函数在单调递增,且,要使得,则,解得,即不等式的解集为,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.9、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用二倍角的余弦公式求得cos2a的值【详解】∵.故答案为:12、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方13、【解析】令对数的真数为,即可求出定点的横坐标,再代入求值即可;【详解】解:因为函数(且),令,解得,所以,即函数恒过点;故答案为:14、##【解析】根据集合元素属性特征进行求解即可.【详解】因为,所以,可得,因为,所以,集合故答案为:15、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.16、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),;(3)【解析】(1)由,得,即.此方程无实根,函数不属于集合.(2)由,得解得为任意实数;(3)由,得,即整理得,有解;解得综上18、(1)15,3225;(2).【解析】(1)将数据代入公式,即可求得平均数和方差.(2)6场比赛中得分不超过平均数的有4场,可记为,超过平均数的有2场,可记为,分别求得6场比赛中抽出2场,总事件及满足题意的事件,根据古典概型概率公式,即可得答案.【详解】解:(1)平均数方差(2)由题意得,6场比赛中得分不超过平均数的有4场,可记为超过平均数的有2场,可记为记从6场比赛中抽出2场,抽到的2场都不超过平均数为事件A从6场比赛中抽出2场,共有以下情形:,共有15个基本事件,事件A包含6个基本事件所以19、(1)(2)见解析【解析】(1)取BC中点E连结AE,三棱锥C1﹣CB1A的体积,由此能求出结果.(2)在矩形BB1C1C中,连结EC1,推导出Rt△C1CE∽Rt△CBF,从而CF⊥EC1,再求出AE⊥CF,由此得到在BB1上取F,使得,连结CF,CF即为所求直线解析:(1)取中点连结.在等边三角形中,,又∵在直三棱柱中,侧面面,面面,∴面,∴为三棱锥的高,又∵,∴,又∵底面为直角三角形,∴,∴三棱锥的体积(2)作法:在上取,使得,连结,即为所求直线.证明:如图,在矩形中,连结,∵,,∴,∴,∴,又∵,∴,∴,又∵面,而面,∴,又∵,∴面,又∵面,∴.点睛:这个题目考查的是立体几何中椎体体积的求法,异面直线垂直的证法;对于异面直线的问题,一般是平移到同一平面,再求线线角问题;或者通过证明线面垂直得到线线垂直;对于棱锥体积,可以等体积转化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《壳聚糖缓蚀剂与阴极保护对管线钢的联合作用机制研究》
- 2024船舶买卖合同
- 2025届高三化学复习专练:化学与STSE(原卷版)
- 淮南师范学院《算法设计与分析》2023-2024学年第一学期期末试卷
- 急重症护理腹痛
- 手术室专科护理
- 2024年小学数学五年级数学(北京版)-认识体积-1教案
- 2024年小学数学三年级数学(北京版)-笔算乘法第二课时-3学习任务单
- 2024至2030年中国弹簧拉伸夹具行业投资前景及策略咨询研究报告
- 2024至2030年中国分拆式频显收音机行业投资前景及策略咨询研究报告
- 带状疱疹的护理查房课件
- 顺丰快递公司视觉识别VI手册(清晰电子版)
- 处方点评与合理用药-PPT课件
- 羊奶培训手册
- XX某管道工程通信线路光缆施工组织设计
- 《First aid》(课堂PPT)
- 《生命教育》教学大纲
- 初中义务教育英语新课标必背词汇表
- 2.3 肉质根的形成生理生理ppt课件
- 逻辑电平测试器的课程设计报告书
- 解析几何课件(吕林根+许子道第四版)
评论
0/150
提交评论