版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市增城区四校联考2025届高二上数学期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在单调递减的等比数列中,若,,则()A.9 B.3C. D.2.设等差数列,前n项和分别是,若,则()A.1 B.C. D.3.已知对任意实数,有,且时,则时A. B.C. D.4.若,则()A. B.C. D.5.已知椭圆上一点到椭圆一个焦点的距离是,则点到另一个焦点的距离为()A.2 B.3C.4 D.56.两条平行直线与之间的距离为()A. B.C. D.7.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.18.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.9.如图,若斜边长为的等腰直角(与重合)是水平放置的的直观图,则的面积为()A.2 B.C. D.810.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.11.已知点,点关于原点的对称点为,则()A. B.C. D.12.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则_________14.过点与直线平行的直线的方程是________.15.若,m,三个数成等差数列,则圆锥曲线的离心率为______16.设,是双曲线的两个焦点,P是双曲线上任意一点,过作平分线的垂线,垂足为M,则点M到直线的距离的最小值是___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知两点(1)求以线段为直径的圆C的方程;(2)在(1)中,求过M点的圆C的切线方程18.(12分)已知直线,,,其中与的交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程19.(12分)如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.20.(12分)已知各项为正数的等比数列中,,.(1)求数列通项公式;(2)设,求数列的前n项和.21.(12分)已知公比的等比数列和等差数列满足:,,其中,且是和的等比中项(1)求数列与的通项公式;(2)记数列的前项和为,若当时,等式恒成立,求实数的取值范围22.(10分)如图,在四棱锥中,平面,,且,,,,,为的中点(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.2、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B3、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性4、D【解析】设,计算出、的值,利用平方差公式可求得结果.【详解】设由已知可得,,因此,.故选:D.5、C【解析】根据椭圆的定义,结合题意,即可求得结果.【详解】设椭圆的两个焦点分别为,故可得,又到椭圆一个焦点的距离是,故点到另一个焦点的距离为.故选:.6、D【解析】由已知有,所以直线可化为,利用两平行直线距离公式有,选D.点睛:本题主要考查两平行直线间的距离公式,属于易错题.在用两平行直线距离公式时,两直线中的系数要相同,不然不能用此公式计算7、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.8、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.9、C【解析】由斜二测还原图形计算即可求得结果.【详解】在斜二测直观图中,由为等腰直角三角形,,可得,.还原原图形如图:则,则.故选:C10、A【解析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:11、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C12、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】,,因此,.故答案为:.14、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:15、【解析】由等差中项的性质求参数m,即可得曲线标准方程,进而求其离心率.【详解】由题意,,可得,所以圆锥曲线为,则,,故.故答案为:.16、1【解析】构造全等三角形,结合双曲线定义,求得点的轨迹方程,再根据直线与圆的位置关系,即可求得点到直线距离的最小值.【详解】延长交的延长线于点,如下所示:因为平分,且,故△△,则,又,则,又在△中,分别为的中点,故可得;设点的坐标为,则,即点在圆心为,半径的圆上,圆心到直线的距离,故点到直线距离的最小值为.故答案为:.【点睛】本题考查双曲线的定义,以及直线与圆的位置关系,解决问题的关键在于通过几何关系求得点的轨迹方程,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出圆心和半径即可得到答案;(2)根据题意先求出切线的斜率,进而通过点斜式求出切线方程.【小问1详解】由题意,圆心,半径,则圆C的方程为:.【小问2详解】由题意,,则切线斜率为-1,所以切线方程为:.18、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.19、(1);(2)证明见解析;(3).【解析】(1)设点M,P,Q的坐标,将向量进行坐标化,整理即可得轨迹方程;(2)设点,,直线的倾斜角互补,则两直线斜率互为相反数,用斜率公式计算得到,即可计算kAB;(3)若,由两直线斜率积为-1,可得到关于与的等量关系,写出直线AB的方程,将等量关系代入直线方程整理可得直线AB经过的定点【详解】(1)设,,.由,得,即.因为,所以,所以.所以动点的轨迹为抛物线,其方程为.(2)证明:设点,,若直线的倾斜角互补,则两直线斜率互为相反数,又,,所以,,整理得,所以.(3)因为,所以,即,①直线的方程为:,整理得:,②将①代入②得,即,当时,即直线经过定点.【点睛】本题考查直接法求轨迹方程,考查直线斜率为定值的求法和直线恒过定点问题.20、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)21、(1),;(2).【解析】(1)根据已知条件可得出关于方程,解出的值,可求得的值,即可得出数列与的通项公式;(2)求得,利用错位相减法可求得,分析可知数列为单调递增数列,对分奇数和偶数两种情况讨论,结合参变量分离法可得出实数的取值范围.【详解】(1)设等差数列的公差为,因为,,,且是和的等比中项,所以,整理可得,解得或.若,则,可得,不合乎题意;若,则,可得,合乎题意.所以,;;(2)因为,①,②②①得因为,即对恒成立,所以当且,,故数列为单调递增数列,当为偶数时,,所以;当为奇数时,,所以,即.综上可得22、(1)证明见解析;(2)存在,.【解析】(1)建立空间直角坐标系,求出平面的法向量和直线的单位向量,从而可证明线面平行.(2)令,,设,求出,结合已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《壳聚糖缓蚀剂与阴极保护对管线钢的联合作用机制研究》
- 2024船舶买卖合同
- 2025届高三化学复习专练:化学与STSE(原卷版)
- 淮南师范学院《算法设计与分析》2023-2024学年第一学期期末试卷
- 急重症护理腹痛
- 手术室专科护理
- 2024年小学数学五年级数学(北京版)-认识体积-1教案
- 2024年小学数学三年级数学(北京版)-笔算乘法第二课时-3学习任务单
- 2024至2030年中国弹簧拉伸夹具行业投资前景及策略咨询研究报告
- 2024至2030年中国分拆式频显收音机行业投资前景及策略咨询研究报告
- 带状疱疹的护理查房课件
- 顺丰快递公司视觉识别VI手册(清晰电子版)
- 处方点评与合理用药-PPT课件
- 羊奶培训手册
- XX某管道工程通信线路光缆施工组织设计
- 《First aid》(课堂PPT)
- 《生命教育》教学大纲
- 初中义务教育英语新课标必背词汇表
- 2.3 肉质根的形成生理生理ppt课件
- 逻辑电平测试器的课程设计报告书
- 解析几何课件(吕林根+许子道第四版)
评论
0/150
提交评论