版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东青岛市数学高一上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,底面,底面扇环所对的圆心角为,弧AD长度为弧BC长度的3倍,且,则该曲池的体积为()A B.C. D.2.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.3.已知函数,则在下列区间中必有零点的是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)4.“”是“关于的方程有实数根”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.命题“”的否定是()A. B.C. D.6.若,则A. B.C. D.7.设集合则().A. B.C. D.8.在半径为2的圆上,一扇形的弧所对的圆心角为,则该扇形的面积为()A. B.C. D.9.已知函数,则()A.﹣1 B.C. D.310.设函数f(x)=若,则实数的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为___________.12.若函数(,且)在上是减函数,则实数的取值范围是__________.13.设则__________.14.已知扇形的弧长为,半径为1,则扇形的面积为___________.15.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.16.在中,,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平行四边形中,分别是上的点,且满,记,,试以为平面向量的一组基底.利用向量的有关知识解决下列问题;(1)用来表示向量;(2)若,且,求;18.已知,函数.(Ⅰ)当时,解不等式;(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.19.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值20.设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.21.(1)若正数a,b满足,求的最小值,并求出对应的a,b的值;(2)若正数x,y满足,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用柱体体积公式求体积.【详解】不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧AD长度为弧BC长度的3倍可知,,即.故该曲池的体积.故选:B2、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法3、B【解析】根据存在零点定理,看所给区间的端点值是否异号,,,,所以,那么函数的零点必在区间考点:函数的零点4、A【解析】根据给定条件利用充分条件、必要条件的定义直接判断作答.【详解】当时,方程的实数根为,当时,方程有实数根,则,解得,则有且,因此,关于的方程有实数根等价于,所以“”是“关于的方程有实数根”的充分而不必要条件.故选:A5、D【解析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,按照改量词否结论的法则,所以否定为:,故选:D6、D【解析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为,把已知条件代入运算,求得结果.【详解】,,故选D.【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.7、D【解析】利用求集合交集的方法求解.【详解】因为所以.故选:D.【点睛】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.8、D【解析】利用扇形的面积公式即可求面积.【详解】由题设,,则扇形的面积为.故选:D9、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.10、C【解析】由于的范围不确定,故应分和两种情况求解.【详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【点睛】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据给定条件结合二倍角的正切公式计算作答.【详解】因,则,所以的值为.故答案为:12、【解析】根据分段函数的单调性,列出式子,进行求解即可.【详解】由题可知:函数在上是减函数所以,即故答案为:13、【解析】先求,再求的值.【详解】由分段函数可知,.故答案为:【点睛】本题考查分段函数求值,属于基础题型.14、##【解析】利用扇形面积公式进行计算.【详解】即,,由扇形面积公式得:.故答案为:15、【解析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【点睛】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案16、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由平面向量的线性运算法则结合图形即可得解;(2)由平面向量数量积的运算律可得,进而可得,再由运算即可得解.【详解】(1)∵在平行四边形中,,∴;(2)由(1)可知:,∴,∵且,∴,∴,又,∴,∴,∴.【点睛】本题考查了平面向量线性运算及数量积运算的应用,考查了运算求解能力,属于基础题.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)当时,利用对数函数的单调性,直接解不等式即可;(Ⅱ)化简关于的方程,通过分离变量推出的表达式,通过解集中恰有一个元素,利用二次函数的性质,即可求的取值范围;(Ⅲ)在上单调递减利用复合函数的单调性求解函数的最值,令,化简不等式,转化求解不等式的最大值,然后推出的范围.【详解】(Ⅰ)当时,,∴,整理得,解得.所以原不等式的解集为.(Ⅱ)方程,即为,∴,∴,令,则,由题意得方程在上只有一解,令,,转化为函数与的图象在上只有一个交点.则分别作出函数与的图象,如图所示结合图象可得,当或时,直线y=a和的图象只有一个公共点,即方程只有一个解所以实数范围为.(Ⅲ)因为函数在上单调递减,所以函数定义域内单调递减,所以函数在区间上的最大值为,最小值为,所以由题意得,所以恒成立,令,所以恒成立,因为在上单调递增,所以∴,解得,又,∴所以实数的取值范围是.【点睛】解答此类题时注意以下几点:(1)对于复合函数的单调性,可根据“同增异减”的方法进行判断;(2)已知方程根的个数(函数零点的个数)求参数范围时,可通过解方程的方法求解,对于无法解方程的,可通过分离、构造函数的方法转化为函数图象公共点个数的问题处理(3)解不等式的恒成立问题时,通常采取分离参数的方法,将问题转化为求函数的最值的问题19、(1)(2)最大值1,最小值0【解析】(1)先利用二倍角正余弦公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求最小正周期.(2)先根据,得正弦函数取值范围,再求函数最值试题解析:(Ⅰ)∴的最小正周期(Ⅱ)∵,∴,∴,∴,即:当且仅当时,取最小值,当且仅当,即时,取最大值,点睛:三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征20、(1);(2)(-∞,-2)∪(0,2)【解析】(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(2)f(x)<-,当x=0时,f(x)<-不成立;当x>0时,即<-,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版商务车租赁合同(含保险责任条款)
- 二零二五版合作开发房地产合同绿色建筑认证3篇
- 2025年绿色建筑土石方工程承包合同样本2篇
- 2025年度菜园大棚蔬菜种植与农业科技研发合同3篇
- 2025版路灯设施安全检查与应急抢修服务合同4篇
- 二零二四年医疗耗材配件销售代理合同样本3篇
- 2025年度工业用地场地租赁及使用权转让合同3篇
- 2025年度车辆租赁与道路救援服务合同3篇
- 2025年新能源汽车专用车位租赁与充电服务合同2篇
- 2025年度房地产项目融资合同8篇
- 家庭年度盘点模板
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
- 饲料厂现场管理类隐患排查治理清单
- 【名著阅读】《红岩》30题(附答案解析)
- Starter Unit 2 同步练习人教版2024七年级英语上册
- 分数的加法、减法、乘法和除法运算规律
- 2024年江苏鑫财国有资产运营有限公司招聘笔试冲刺题(带答案解析)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库含答案
评论
0/150
提交评论