版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南长沙市数学高一上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.42.已知点P3,-4是角α的终边上一点,则sinA.-75C.15 D.3.为了得到函数的图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位4.设,则下列不等式一定成立的是()A B.C. D.5.已知全集,集合,集合,则A. B.C. D.6.若函数f(x)=,则f(f())=()A.4 B.C. D.7.已知,且,对任意的实数,函数不可能A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数8.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.89.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.10.已知函数是上的奇函数,且在单调递减,则三个数:,,之间的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.扇形的半径为2,弧长为2,则该扇形的面积为______12.已知,α为锐角,则___________.13.已知函数,则=____________14.已知,,则___________.15.已知是定义在上的偶函数,并满足:,当,,则___________.16.已知函数,且关于的方程有且仅有一个实数根,那实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.在中,角所对的边分别为,__________.(1)求角;(2)求的取值范围.18.给出以下四个式子:①;②;③;④.(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个,求出这个常数;(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.19.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量的夹角的大小.20.已知函数(1)若,求不等式的解集;(2)若时,不等式恒成立,求的取值范围.21.已知平面上点,且.(1)求;(2)若点,用基底表示.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C2、A【解析】利用三角函数的定义可求得结果.【详解】由三角函数的定义可得sinα-故选:A.3、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)图象变换规律的简单应用,属于基础题4、D【解析】对ABC举反例判断即可;对D,根据函数的单调性判断即可【详解】对于A,,,选项A错误;对于B,,时,,不存在,选项B错误;对于C,由指数函数的单调性可知,选项C错误;对于D,由不等式性质可得,选项D正确故选:D5、C【解析】先求出,再和求交集即可.【详解】因全集,集合,所以,又,所以.故选C【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型.6、C【解析】由题意结合函数的解析式求解函数值即可.【详解】由函数的解析式可得:,.故选C【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题7、C【解析】,当时,,为偶函数当时,,为奇函数当且时,既不奇函数又不是偶函数故选8、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.9、B【解析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理10、D【解析】根据题意,得函数在上单调递减,又,,然后结合单调性判断【详解】因为函数是上奇函数,且在单调递减,所以函数在上单调递减,∵,,∴,即故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据扇形的面积公式即可求解.【详解】解:因为扇形的半径为2,弧长为2,所以该扇形的面积为,故答案为:2.12、【解析】由同角三角函数关系和诱导公式可得结果.【详解】因为,且为锐角,则,所以,故.故答案为:.13、【解析】由函数解析式,先求得,再求得代入即得解.【详解】函数,则==,故答案为.【点睛】本题考查函数值的求法,属于基础题.14、【解析】根据余弦值及角的范围,应用同角的平方关系求.【详解】由,,则.故答案为:.15、5【解析】根据可得周期,再结合偶函数,可将中的转化到内,可得的值.【详解】因为,所以,所以,即函数的一个周期为4,所以,又因为是定义在上的偶函数,所以,因当,,所以,所以.故答案为:2.5.16、【解析】利用数形结合的方法,将方程根的问题转化为函数图象交点的问题,观察图象即可得到结果.【详解】作出的图象,如下图所示:∵关于的方程有且仅有一个实数根,∴函数的图象与有且只有一个交点,由图可知,则实数的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,(2)【解析】(1)若选①,由正弦定理得,即可求出;若选②,由正弦定理得,即可求出.(2)用正弦定理得表示出,,得到,利用三角函数求出的取值范围.【小问1详解】若选①,则由正弦定理得,因为,所以,所以,所以,又因为,所以,所以,即.若选②,则由正弦定理得,所以,所以,因为,所以,所以,又因为,所以.【小问2详解】由正弦定理得,所以,同理,由,故,所以由,所以,所以,所以的取值范围是.18、(1);(2)见解析【解析】分析:(1)利用第二个式子,结合同角三角函数的平方关系,以及正弦的倍角公式,结合特殊角的三角函数值,求得结果;(2)根据题中所给的角之间的关系,归纳推理得到结果,证明过程应用相关公式证明即可.详解:(1).(2).证明如下:.点睛:该题考查是有关三角公式的问题,涉及到的知识点有同角三角函数的关系式,正弦的倍角公式,余弦的差角公式等,正确使用公式是解题的关键.19、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【点睛】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.20、(1);(2).【解析】(1)把代入函数解析式,求解关于的一元二次不等式,进一步求解指数不等式得答案;(2)不等式恒成立,等价于恒成立,求出时的范围,可得,即可求出的取值范围【详解】解:(1)当时,即:,则不等式的解集为(2)∵由条件:∴∴恒成立∵即的取值范围是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- XX市工业园区顶层设计建设规划
- 温馨教室课件
- 2024至2030年中国墙体软包专用板行业投资前景及策略咨询研究报告
- 2024年中国鱼竿配件市场调查研究报告
- 2024年中国网漏市场调查研究报告
- 2024至2030年中国预硫化轮胎行业投资前景及策略咨询研究报告
- 2024至2030年中国虎钳行业投资前景及策略咨询研究报告
- 《广告策略的制定》课件
- 2024至2030年自喷水感应器项目投资价值分析报告
- 2024至2030年双盘磨擦压砖机项目投资价值分析报告
- 人教版八年级上册英语期末专项复习之完型填空
- 中医护理方案培训与实施计划(2篇)
- GB/T 18488-2024电动汽车用驱动电机系统
- 犁地合同模板
- 装配式混凝土建筑预制叠合板、叠合梁识图
- 酒店二次供水管理制度
- (高清版)JGJT 178-2009 补偿收缩混凝土应用技术规程
- 大班社会:《我的名片我做主》
- 不定积分专题试题
- 中等职业学校公共基础课水平测试数学测试试卷及答案A
- 山东师范大学语言学概论期末考试复习题
评论
0/150
提交评论