福建省部分重点高中2025届数学高二上期末预测试题含解析_第1页
福建省部分重点高中2025届数学高二上期末预测试题含解析_第2页
福建省部分重点高中2025届数学高二上期末预测试题含解析_第3页
福建省部分重点高中2025届数学高二上期末预测试题含解析_第4页
福建省部分重点高中2025届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省部分重点高中2025届数学高二上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列满足,则q=()A.1 B.-1C.3 D.-32.设,“命题”是“命题”的()A.充分且不必要条件 B.必要且不充分条件C.充要条件 D.既不充分也不必要条件3.已知双曲线右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A.2 B.C. D.4.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.5.已知直线与圆相离,则以,,为边长的三角形为()A.钝角三角形 B.直角三角形C.锐角三角形 D.不存在6.已知过点的直线l与圆相交于A,B两点,则的取值范围是()A. B.C. D.7.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.8.若定义在R上的函数的图象如图所示,为函数的导函数,则不等式的解集为()A. B.C. D.9.已知,,若,则实数的值为()A. B.C. D.10.设a,b,c非零实数,且,则()A. B.C. D.11.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.51212.已知直线的一个方向向量,平面的一个法向量,若,则()A.1 B.C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________14.在等比数列中,若,,则数列的公比为___________.15.圆心为直线与直线的交点,且过原点的圆的标准方程是________16.已知圆关于直线对称,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若函数与在x=1处的切线平行,求函数在处的切线方程;(2)当时,若恒成立,求实数a的取值范围.18.(12分)已知圆台的上下底面半径分别为,母线长为.求:(1)圆台的高;(2)圆台的体积注:圆台体积公式:,其中,S分别为上下底面面积,h为圆台的高19.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.20.(12分)如图,是底面边长为1的正三棱锥,分别为棱上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)求证:为正四面体;(2)若,求二面角的大小;(3)设棱台的体积为,是否存在体积为且各棱长均相等的直四棱柱,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直四棱柱,并给出证明;若不存在,请说明理由.21.(12分)为庆祝中国共产党成立100周年,某校举行了党史知识竞赛,在必答题环节,甲、乙两位选手分别从3道选择题(1)甲至少抽到1道填空题(2)甲答对的题数比乙多的概率.22.(10分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.2、A【解析】根据充分、必要条件的概念理解,可得结果.【详解】由,则或所以“”可推出“或”但“或”不能推出“”故命题是命题充分且不必要条件故选:A【点睛】本题主要考查充分、必要条件的概念理解,属基础题.3、B【解析】,得出到渐近线的距离为,由此可得的关系,从而求得离心率【详解】因为,而,所以是等边三角形,到直线的距离为,又,渐近线方程取,即,所以,化简得故选:B4、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.5、A【解析】应用直线与圆的相离关系可得,再由余弦定理及三角形内角的性质即可判断三角形的形状.【详解】由题设,,即,又,所以,且,故以,,为边长的三角形为钝角三角形.故选:A.6、D【解析】经判断点在圆内,与半径相连,所以与垂直时弦长最短,最长为直径【详解】将代入圆方程得:,所以点在圆内,连接,当时,弦长最短,,所以弦长,当过圆心时,最长等于直径8,所以的取值范围是故选:D7、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B8、A【解析】由函数单调性得出和的解,然后分类讨论解不等式可得【详解】由图象可知:在为正,在为负,,可化为:或,解得或故选:A9、A【解析】由,得,从而可得答案.【详解】解:因为,所以,即,解得.故选:A.10、C【解析】对于A、B、D:取特殊值否定结论;对于C:利用作差法证明.【详解】对于A:取符合已知条件,但是不成立.故A错误;对于B:取符合已知条件,但是,所以不成立.故B错误;对于C:因为,所以.故C正确;对于D:取符合已知条件,但是,所以不成立.故D错误;故选:C.11、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.12、D【解析】由向量平行充要条件代入解之即可解决.【详解】由,可知,则有,解之得故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.14、##【解析】求出等比数列的公比,利用定义可求得数列的公比.【详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.15、【解析】由,求得圆心,再根据圆过原点,求得半径即可.【详解】由,可得,即圆心为,又圆过原点,所以圆的半径,故圆的标准方程为故答案为:【点睛】本题主要考查圆的方程的求法,属于基础题.16、1【解析】根据题意,圆心在直线上,进而求得答案.【详解】由题意,圆心在直线上,则.故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出函数的导数,利用切线平行求出a,即可求出切线方程;(2)先把已知条件转化为,令,,利用导数求出的最小值,即可求出实数a的取值范围.【详解】(1),故,而,故,故,解得:,故,故的切线方程是:,即;(2)当时,恒成立等价于,令,.则,令,解得:;令,解得:;所以在上单减,在上单增,所以,所以.即实数a的取值范围为.18、(1);(2).【解析】(1)作出圆台的直观图,过点A作,垂足为H,由勾股定理可求圆台的高;(2)结合(1),利用圆台的体积公式可求圆台的体积【详解】(1)作出圆台的直观图,如图,设圆台上下底面圆心分别为,为圆台的一条母线,连接,,过点A作,垂足为H,则的长等于圆台的高,因为圆台的上下底面半径分别为,母线长为所以,,则,可得,故圆台高为;(2)圆的面积圆的面积为故圆台的体积为19、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.20、(1)证明见解析;(2);(3)存在,构造棱长均为,底面相邻两边的夹角为的直四棱柱即满足条件.【解析】(1)由棱台、棱锥的棱长和相等可得,再由面面平行有,结合正四面体的结构特征即可证结论.(2)取BC的中点M,连接PM、DM、AM,由线面垂直的判定可证平面PAM,即是二面角的平面角,进而求其大小.(3)设直四棱柱的棱长均为,底面相邻两边的夹角为,结合已知条件用表示出即可确定直四棱柱.【小问1详解】由棱台与棱锥的棱长和相等,∴,故.又截面底面ABC,则,,∴,从而,故为正四面体.【小问2详解】取BC的中点M,连接PM、DM、AM,由,,得:平面PAM,而平面PAM,故,从而是二面角的平面角.由(1)知,三棱锥的各棱长均为1,所以.由D是PA的中点,得.在Rt△ADM中,,故二面角的大小为.【小问3详解】存在满足条件的直四棱柱.棱台的棱长和为定值6,体积为V.设直四棱柱的棱长均为,底面相邻两边的夹角为,则该四棱柱的棱长和为6,体积为.因为正四面体的体积是,所以,,从而,故构造棱长均为,底面相邻两边的夹角为的直四棱柱,即满足条件.21、(1);(2).【解析】(1)把3道选择题(2)设,分别表示甲答对1道题,2道题的事件,,分别表示乙答对0道题,1道题的事件,分别求出它们的概率,甲答对的题数比乙多这个事件是,然后由相互独立的事件和互斥事件的概率公式计算【详解】解:(1)记3道选择题则试验的样本空间,.共有10个样本点,且每个样本点是等可能发生的,所以这是一个古典概型.记事件A=“甲至少抽到1道填空题,.所以,,.所以,.因此,甲至少抽到1道填空题(2)设,分别表示甲答对1道题,2道题的事件,分别表示乙答对0道题,1道题的事件,根据独立性假定,得,.,.记事件B=“甲答对的题数比乙多”,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论