广西桂林市重点名校2025届高一上数学期末复习检测试题含解析_第1页
广西桂林市重点名校2025届高一上数学期末复习检测试题含解析_第2页
广西桂林市重点名校2025届高一上数学期末复习检测试题含解析_第3页
广西桂林市重点名校2025届高一上数学期末复习检测试题含解析_第4页
广西桂林市重点名校2025届高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西桂林市重点名校2025届高一上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)2.已知是R上的奇函数,且对,有,当时,,则()A.40 B.C. D.3.有三个函数:①,②,③,其中图像是中心对称图形的函数共有().A.0个 B.1个C.2个 D.3个4.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为()A. B.C. D.5.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.6.在正方体中,为棱的中点,则A. B.C. D.7.已知函数,那么的值为()A.25 B.16C.9 D.38.设集合U=R,,,则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}9.已知,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.集合用列举法表示是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若不等式对一切恒成立,则a的取值范围是______________.12.设向量,,则__________13.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________14.已知函数的图象经过定点,若为正整数,那么使得不等式在区间上有解的的最大值是__________.15.已知函数,则使不等式成立的的取值范围是_______________16.函数y=cos2x-sinx的值域是__________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,当时有.(1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明.18.已知,,且.(1)求实数a的值;(2)求.19.甲乙两人用两颗质地均匀的骰子(各面依次标有数字1、2、3、4、5、6的正方体)做游戏,规则如下:若掷出的两颗骰子点数之和为3的倍数,则由原投掷人继续投掷,否则由对方接着投掷.第一次由甲投掷(1)求第二次仍由甲投掷的概率;(2)求游戏前4次中乙投掷的次数为2的概率20.已知点,,动点P满足若点P为曲线C,求此曲线的方程;已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程21.已知函数.(1)求其最小正周期和对称轴方程;(2)当时,求函数的单调递减区间和值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用函数奇偶性,等价转化目标不等式,再结合已知条件以及函数单调性,即可求得不等式解集.【详解】∵f(x)为奇函数,故可得,则<0等价于.∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞)故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.2、C【解析】根据已知和对数运算得,,再由指数运算和对数运算法则可得选项.【详解】因为,,故,.∵,故.故选:C【点睛】关键点点睛:解决本题类型的问题的关键在于:1、由已知得出抽象函数的周期;2、根据函数的周期和对数运算法则将自变量转化到已知范围中,可求得函数值.3、C【解析】根据反比例函数的对称性,图象变换,然后结合中心对称图形的定义判断【详解】,显然函数的图象是中心对称图形,对称中心是,而的图形是由的图象向左平行3个单位,再向下平移1个单位得到的,对称中心是,由得,于是不是中心对称图形,,中间是一条线段,它关于点对称,因此有两个中心对称图形故选:C4、D【解析】由图像知A="1,",,得,则图像向右移个单位后得到的图像解析式为,故选D5、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制6、C【解析】画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论【详解】画出正方体,如图所示对于选项A,连,若,又,所以平面,所以可得,显然不成立,所以A不正确对于选项B,连,若,又,所以平面,故得,显然不成立,所以B不正确对于选项C,连,则.连,则得,所以平面,从而得,所以.所以C正确对于选项D,连,若,又,所以平面,故得,显然不成立,所以D不正确故选C【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题7、C【解析】根据分段函数解析式求得.【详解】因为,所以.故选:C8、D【解析】先求出集合A,B,再由图可知阴影部分表示,从而可求得答案【详解】因为等价于,解得,所以,所以或,要使得函数有意义,只需,解得,所以则由韦恩图可知阴影部分表示.故选:D.9、C【解析】根据充分条件和必要条件定义结合不等式的性质即可判断.【详解】若,则,所以充分性成立,若,则,所以必要性成立,所以“”是“”的充分必要条件,故选:C.10、D【解析】解不等式,结合列举法可得结果.【详解】.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先讨论时不恒成立,再根据二次函数的图象开口方向、判别式进行求解.【详解】当时,则化为(不恒成立,舍),当时,要使对一切恒成立,需,即,即a的取值范围是.故答案为:.12、【解析】,故,故填.13、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.14、【解析】由可得出,由已知不等式结合参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围,即可得解.【详解】由已知可得,则,解得,故,由得,因为,则,可得,令,,则函数在上单调递减,所以,,.因此,正整数的最大值为.故答案:.15、【解析】由奇偶性定义可判断出为偶函数,结合复合函数单调性的判断可得到在上单调递增,由偶函数性质知其在上单调递减,利用函数单调性解不等式即可求得结果.【详解】由,解得:或,故函数的定义域为,又,为上的偶函数;当时,单调递增,设,,在上单调递增,在上单调递增,在上单调递增,又为偶函数,在上单调递减;由可知,解得.故答案为:.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.16、【解析】将原函数转换成同名三角函数即可.【详解】,,当时取最大值,当时,取最小值;故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)当时,则,可得,进而得到函数的解析式;(2)利用函数的单调性的定义,即可证得函数的单调性,得到结论.【详解】(1)由题意,当时,则,可得,因为函数为奇函数,所以,所以函数的解析式为.(2)函数在单调递增函数.证明:设,则因为,所以所以,即故在为单调递增函数【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的单调性的判定与证明,其中解答中熟记函数的单调性的定义,以及熟练应用的函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)(2)【解析】(1)根据同角三角函数关系求解或,结合角所在象限求出,从而得到答案;(2)在第一问的基础上,得到正弦和余弦,进而求出正切和余弦,利用诱导公式求出答案.【小问1详解】由题意得:,解得:或因为,所以,,解得:,综上:.【小问2详解】由(1)得:,,故,,故19、(1)(2)【解析】(1)由题意利用古典概型求概率的计算公式求得结果(2)游戏的前4次中乙投掷的次数为2,包含3种情况,根据独立事件的乘法公式及互斥事件的加法公式,可计算结果【小问1详解】求第二次仍由甲投,说明第一次掷出的点数之和为3的倍数,所有的情况共有种,其中,掷出的点数之和为3的倍数的情况有、、、、、,、、、、、,共计12种情况,故第二次仍由甲投掷的概率为【小问2详解】由(1)可得掷出的两颗骰子点数之和为3的倍数的概率为,所以两颗骰子点数之和不为3的倍数的概率为,游戏的前4次中乙投掷的次数为2,可能乙投掷的次数为第二次第三次,则概率为,或第二次第四次,则概率为,或第三次第四次,则概率为,以上三个事件互斥,所以其概率为.20、(1)(2)或【解析】设,由动点P满足,列出方程,即可求出曲线C的方程设直线l在坐标轴上的截距为a,当时,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程与圆的方程联立方程组,根据由直线l与曲线C只有一个公共点,即可求出直线l的方程【详解】设,点,,动点P满足,整理得:,曲线C方程为设直线l的横截距为a,则直线l的纵截距也为a,当时,直线l过,设直线方程为把代入曲线C的方程,得:,,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程为,把代入曲线C的方程,得:,直线l与曲线C只有一个公共点,,解得,直线l的方程为或【点睛】本题主要考查了曲线轨迹方程的求法,以及直线与圆的位置关系的应用,其中解答中熟记直接法求轨迹的方法,以及合理使用直线与圆的位置关系是解答的关键,着重考查了推理与运算能力,以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论