2025届贵州黔东南州高一数学第一学期期末学业水平测试模拟试题含解析_第1页
2025届贵州黔东南州高一数学第一学期期末学业水平测试模拟试题含解析_第2页
2025届贵州黔东南州高一数学第一学期期末学业水平测试模拟试题含解析_第3页
2025届贵州黔东南州高一数学第一学期期末学业水平测试模拟试题含解析_第4页
2025届贵州黔东南州高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州黔东南州高一数学第一学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则一定有()A. B.C. D.以上答案都不对2.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.43.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数A. B.2C.3 D.2或4.函数的零点所在区间是A. B.C. D.5.集合中所含元素为A.0,1 B.,1C.,0 D.16.在中,,.若点满足,则()A. B.C. D.7.已知函数是定义在上的偶函数,当时,,则函数的零点个数为()A.20 B.18C.16 D.148.函数有()A.最大值 B.最小值C.最大值2 D.最小值29.已知函数的图象与函数的图象关于直线对称,函数是满足的偶函数,且当时,,若函数有3个零点,则实数的取值范围是()A. B.C. D.10.下列各组函数是同一函数的是()①与;②与;③与;④与A.①② B.①③C.③④ D.①④二、填空题:本大题共6小题,每小题5分,共30分。11.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________12.已知角的终边过点,则_______13.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.14.已知,则的值为______.15.在用二分法求方程的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.16.已知函数,若函数有3个零点,则实数a的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集为R,集合,(1)求;(2)求18.已知圆经过,两点,且圆心在直线:上.(Ⅰ)求圆的方程;(Ⅱ)若点在直线:上,过点作圆的一条切线,为切点,求切线长的最小值;(Ⅲ)已知点为,若在直线:上存在定点(不同于点),满足对于圆上任意一点,都有为一定值,求所有满足条件点的坐标.19.某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油吨,以满足城区内和城外汽车用油需求,已知城外汽车用油每周5吨;城区内汽车用油前个周需求量吨与的函数关系式为,为常数,且前4个周城区内汽车的汽油需求量为100吨.(1)试写出第个周结束时,汽油存储量(吨)与的函数关系式;(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定的取值范围.20.已知函数,(1)求在上的最小值;(2)记集合,,若,求的取值范围.21.如图,已知矩形,,,点为矩形内一点,且,设.(1)当时,求证:;(2)求的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于ABC,举例判断,【详解】对于AB,若,则,所以AB错误,对于C,若,则,所以C错误,故选:D2、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D3、A【解析】根据幂函数的定义,求出m的值,代入判断即可【详解】函数是幂函数,,解得:或,时,,其图象与两坐标轴有交点不合题意,时,,其图象与两坐标轴都没有交点,符合题意,故,故选A【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题4、C【解析】根据函数零点存在性定理进行判断即可【详解】∵,,∴,∴函数在区间(2,3)上存在零点故选C【点睛】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件5、A【解析】,解,得,故选6、A【解析】,故选A7、C【解析】解方程,得或,作出的图象,由对称性只要作的部分,观察的图象与直线和直线的交点的个数即得【详解】,或根据函数解析式以及偶函数性质作图象,当时,.,是抛物线的一段,当,由的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y轴右侧的图象,根据对称轴可得左侧的结论,时,,的图象与直线和的交点个数,分别有3个和5个,∴函数g(x)的零点个数为,故选:C【点睛】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论8、D【解析】分离常数后,用基本不等式可解.【详解】(方法1),,则,当且仅当,即时,等号成立.(方法2)令,,,.将其代入,原函数可化为,当且仅当,即时等号成立,此时.故选:D9、B【解析】把函数有3个零点,转化为有3个不同根,画出函数与的图象,转化为关于的不等式组求解即可.【详解】由函数的图象与函数的图象关于直线对称,得,函数是最小正周期为2的偶函数,当时,,函数有3个零点,即有3个不同根,画出函数与的图象如图:要使函数与的图象有3个交点,则,且,即.∴实数的取值范围是.故选:B.10、C【解析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可.【详解】①中的定义域为,的定义域也是,但与对应关系不一致,所以①不是同一函数;②中与定义域都是R,但与对应关系不一致,所以②不是同一函数;③中与定义域都是,且,对应关系一致,所以③是同一函数;④中与定义域和对应关系都一致,所以④是同一函数.故选C【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:12、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.13、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.14、【解析】用诱导公式计算【详解】,,故答案为:15、【解析】根据二分法,取区间中点值,而,,所以,故判定根区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间16、(0,1]【解析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【点睛】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据给定条件利用交集的定义直接计算即可作答.(2)利用并集的定义求出,再借助补集的定义直接求解作答.【小问1详解】因为,,所以.【小问2详解】因为,,则,而全集为R,所以或.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根据题意,设出圆的标准方程,代入条件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小时,垂直于直线,据此可得结论;(Ⅲ)设,,列出相应等式化简,再利用点的任意性,列出方程组求解即可.【详解】(Ⅰ)设圆的方程为,根据题意有,解得,所以圆的方程为;(Ⅱ)由勾股定理得,即,所以要求的最小值,即求的最小值,而当垂直于直线时,最小,此时,所以的最小值为;(Ⅲ)设,满足,假设的定值为,则,化简得,因为对于圆上任意一点上式都成立,所以,解得(舍),因此满足条件点的坐标为.【点睛】本题涉及圆与直线的综合应用,利用了数形结合等思想,考查了学生分析解决问题的能力,综合性较强.在答题时要注意:①线外一点到线上一点的距离中,垂线段最短;②解决任意性问题的关键是令含参部分的系数为0,最常见的就是过定点问题.19、(1)(2)【解析】(1)根据题意前4个周城区内汽车的汽油需求量为100吨,得,;(2)每周结束时加油站的汽油存储量不超过150吨,故,恒成立,转化为恒成立,通过换元分别求得函数的最值即可解析:(1)由已知条件得,解得.所以..(2)由题意,,所以,恒成立,即恒成立.设,则,所以()恒成立,由()恒成立,得(当,即时取等号);由()恒成立,得(当,即时取等号),所以的取值范围是.点睛:这个题目考查了函数的实际应用;对于这种题目,首先理解好题意,找到函数模型,列出数学表达式,注意函数的定义域要结合实际.在处理表达式时,通常会遇到求函数的最值和值域的问题,一般高次的会用到求导,研究单调性等.也可能通过换元将函数转化为熟悉的二次,或单调函数.20、(1)答案见解析(2)【解析】(1)按对称轴与区间的相对位置关系,分三种情况讨论求最小值;(2)分与解不等式,再分析的情况即可求解.【小问1详解】解:(1)由,抛物线开口向上,对称轴为,在上的最小值需考虑对称轴与区间的位置关系.(i)当时,;(ii)当时,;(ⅲ)当时,【小问2详解】(2)解不等式,即,可得:当时,不等式的解为;当时,不等式的解为.(i)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时(ii)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时无解.综上所述,的取值范围.21、(1)见解析(2)【解析】(1)以为坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论