2025届宁夏银川市第六中学高一上数学期末复习检测模拟试题含解析_第1页
2025届宁夏银川市第六中学高一上数学期末复习检测模拟试题含解析_第2页
2025届宁夏银川市第六中学高一上数学期末复习检测模拟试题含解析_第3页
2025届宁夏银川市第六中学高一上数学期末复习检测模拟试题含解析_第4页
2025届宁夏银川市第六中学高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届宁夏银川市第六中学高一上数学期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-12.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.3.对于函数,若存在,使,则称点是曲线“优美点”.已知,则曲线的“优美点”个数为A.1 B.2C.4 D.64.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1255.设函数若关于的方程有四个不同的解且则的取值范围是A. B.C. D.6.香农定理是所有通信制式最基本的原理,它可以用香农公式来表示,其中是信道支持的最大速度或者叫信道容量,是信道的带宽(),S是平均信号功率(),是平均噪声功率().已知平均信号功率为,平均噪声功率为,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A. B.C. D.7.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则8.已知,,且,,,那么的最大值为()A. B.C.1 D.29.函数在区间的图象大致是()A. B.C. D.10.若函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分图象如图所示,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx二、填空题:本大题共6小题,每小题5分,共30分。11.已知则________12.不论为何实数,直线恒过定点__________.13.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________14.已知球有个内接正方体,且球的表面积为,则正方体的边长为__________15.实数271316.已知满足任意都有成立,那么的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求的值;(2)求的值18.已知函数(其中),函数(其中).(1)若且函数存在零点,求的取值范围;(2)若是偶函数且函数的图象与函数的图象只有一个公共点,求实数的取值范围.19.定义在D上的函数,如果满足:存在常数,对任意,都有成立,则称是D上的有界函数,其中M称为函数的上界.(1)证明:在上有界函数;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围.20.已知函数,(1)求函数的单调递增区间;(2)当时,方程恰有两个不同的实数根,求实数的取值范围;(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值21.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B2、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.3、C【解析】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,求出的函数关于原点对称的函数解析式,与联立,解方程可得交点个数【详解】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,由可得,关于原点对称的函数,,联立和,解得或,则存在点和为“优美点”,曲线的“优美点”个数为4,故选C【点睛】本题考查新定义的理解和运用,考查转化思想和方程思想,属于难题.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.4、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D5、A【解析】画出函数的图像,通过观察的图像与的交点,利用对称性求得与的关系,根据对数函数的性质得到与的关系.再利用函数的单调性求得题目所求式子的取值范围.【详解】画出函数的图像如下图所示,根据对称性可知,和关于对称,故.由于,故.令,解得,所以.,由于函数在区间为减函数,故,故选A.【点睛】本小题主要考查函数的对称性,考查对数函数的性质,以及函数图像的交点问题,还考查了利用函数的单调性求函数的值域的方法,属于中档题.6、A【解析】利用题设条件,计算出原信道容量的表达式,再列出在B不变时用所求平均噪声功率表示的信道容量的表达式,最后列式求解即得.【详解】由题意可得,,则在信道容量未增大时,信道容量为,信道容量增大到原来2倍时,,则,即,解得,故选:A7、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.8、C【解析】根据题意,由基本不等式的性质可得,即可得答案.【详解】根据题意,,,,则,当且仅当时等号成立,即的最大值为1.故选:9、C【解析】判断函数非奇非偶函数,排除选项A、B,在计算时的函数值可排除选项D,进而可得正确选项.【详解】因为,且,所以既不是奇函数也不是偶函数,排除选项A、B,因为,排除选项D,故选:C【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.10、A【解析】观察函数图像,求得,再结合函数图像的平移变换即可得解.详解】解:由图可知,,即,又,所以,即,又由图可知,所以,又,即即,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则,故选:A.【点睛】本题考查了利用函数图像求解析式,重点考查了函数图像的平移变换,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分段函数的求值,在不同的区间应使用不同的表达式.【详解】,故答案为:.12、【解析】直线整理可得.令,解得,即直线恒过定点点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点.13、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.14、【解析】设正方体的棱长为x,则=36π,解得x=故答案为15、1【解析】直接根据指数幂运算与对数运算求解即可.【详解】解:27故答案为:116、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据指数幂的运算性质,化简计算,即可得答案.(2)根据对数的运算性质,化简计算,即可得答案.【详解】(1)原式;(2)原式18、(1);(2)或.【解析】(1)根据题意,分离参数且利用对数型复合函数的单调性求得的值域,即可求得参数的取值范围;(2)根据是偶函数求得参数,再根据题意,求解指数方程即可求得的取值范围.【小问1详解】由题意知函数存零点,即有解.又,易知在上是减函数,又,,即,所以,所以的取值范围是.【小问2详解】的定义域为,若是偶函数,则,即解得.此时,,所以即为偶函数.又因为函数与的图象有且只有一个公共点,故方程只有一解,即方程有且只有一个实根令,则方程有且只有一个正根①当时,,不合题意,②当时,方程有两相等正根,则,且,解得,满足题意;③若一个正根和一个负根,则,即时,满足题意,综上所述:实数的取值范围为或.【点睛】本题考察利用函数奇偶性求参数值,以及对数方程的求解,对数型复合函数值域的求解,解决问题的关键是熟练的掌握对数函数的性质,属综合困难题.19、(1)证明见解析(2)【解析】(1)根据,利用求解单调性求解;(2)根据在上是以3为上界的有界函数,令,则,转化,在时恒成立求解.【小问1详解】解:,则在上是严格增函数,故,即,故,故是有界函数;【小问2详解】因为在上是以3为上界的有界函数,所以在上恒成立,令,则,所以在时恒成立,所以,在时恒成立,函数在上严格递减,所以;函数在上严格递增,所以.所以实数a的取值范围是.20、(1);(2);(3)【解析】(1)由余弦函数的单调性,解不等式,,即可求出;(2)利用函数的性质,结合在时的单调性与最值,可得实数的取值范围;(3)先求出的解析式,然后利用图象关于原点中心对称,是奇函数,可求出的最小值【详解】(1)由余弦函数的单调性,解不等式,,得,所以函数的单调递增区间为;(2)函数的单调递增区间为,单调递减区间为,所以函数在上单调递增,在上单调递减,则,,,所以当时,函数与函数的图象有两个公共点,即当时,方程恰有两个不同的实数根时(3)函数的图象向右平移个单位,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论