版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市宁远县第一中学2025届高二上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点恰为双曲线的一个顶点,的另一顶点为,与在第一象限内的交点为,若,则直线的斜率为()A. B.C. D.2.在正四面体中,点为所在平面上动点,若与所成角为定值,则动点的轨迹是()A.圆 B.椭圆C.双曲线 D.抛物线3.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.如图,已知二面角平面角的大小为,其棱上有、两点,、分别在这个二面角的两个半平面内,且都与垂直.已知,,则()A. B.C. D.5.已知等差数列的前n项和为,公差,若(,),则()A.2023 B.2022C.2021 D.20206.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.7.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.8.命题:“,”的否定形式为()A., B.,C., D.,9.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.10.已知等差数列的公差,若,,则该数列的前项和的最大值为()A.30 B.35C.40 D.4511.执行如图所示的程序框图,输出的值为()A. B.C. D.12.19世纪法国著名数学家加斯帕尔·蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根.若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆的圆心坐标为___________;半径为___________.14.某商场对华为手机近28天的日销售情况进行统计,得到如下数据,t36811ym357利用最小二乘法得到日销售量y(百部)与时间t(天)的线性回归方程为,则表格中的数据___________.15.椭圆的左、右焦点分别为,,为坐标原点,则以下说法正确的是()A.过点的直线与椭圆交于,两点,则的周长为8B.椭圆上存在点,使得C.椭圆的离心率为D.为椭圆上一点,为圆上一点,则点,的最大距离为316.设椭圆标准方程为,则该椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值18.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长19.(12分)2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?非围棋迷围棋迷合计男女1055合计(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,21.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率22.(10分)已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,列出的方程组,解得,再利用斜率公式即可求得结果.【详解】因为抛物线的焦点,由题可知;又点在抛物线上,故可得;又,联立方程组可得,整理得,解得(舍)或,此时,又,故直线的斜率为.故选:D.2、B【解析】把条件转化为与圆锥的轴重合,面与圆锥的相交轨迹即为点的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令与圆锥的轴线重合,如图所示,则圆锥母线与所成角为定值,所以面与圆锥的相交轨迹即为点的轨迹.根据题意,不可能垂直于平面即轨迹不可能为圆.面不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算与平面所成角为,即时,轨迹为抛物线,时,轨迹为椭圆,,所以轨迹为椭圆.故选:B.【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.3、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A4、C【解析】以、为邻边作平行四边形,连接,计算出、的长,证明出,利用勾股定理可求得的长.【详解】如下图所示,以、为邻边作平行四边形,连接,因为,,则,又因为,,,故二面角的平面角为,因为四边形为平行四边形,则,,因为,故为等边三角形,则,,则,,,故平面,因为平面,则,故.故选:C.5、C【解析】根据题意令可得,结合等差数列前n项和公式写出,进而得到关于的方程,解方程即可.【详解】因为,令,得,又,,所以,有,解得.故选:C6、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.7、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.8、D【解析】根据含一个量词的命题的否定方法直接得到结果.【详解】因为全称命题的否定是特称命题,所以命题:“,”的否定形式为:,,故选:D.【点睛】本题考查全称命题的否定,难度容易.含一个量词的命题的否定方法:修改量词,否定结论.9、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.10、D【解析】利用等差数列的性质求出公差以及首项,再由等差数列的前项和公式即可求解.【详解】等差数列,由,有,又,公差,所以,,得,,,∴当或10时,最大,,故选:D11、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.12、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】配方后可得圆心坐标和半径【详解】将圆的一般方程化为圆标准方程是,圆心坐标为,半径为故答案为:;14、1【解析】根据已知条件,求出,的平均值,再结合线性回归方程过样本中心,即可求解【详解】解:由表中数据可得,,,线性回归方程为,,解得故答案为:115、ABD【解析】结合椭圆定义判断A选项的正确性,结合向量数量积的坐标运算判断B选项的正确性,直接法求得椭圆的离心率,由此判断C选项的正确性,结合两点间距离公式判断D选项的正确性.【详解】对于选项:由椭圆定义可得:,因此的周长为,所以选项正确;对于选项:设,则,且,又,,所以,,因此,解得,,故选项正确;对于选项:因为,,所以,即,所以离心率,所以选项错误;对于选项:设,,则点到圆的圆心的距离为,因为,所以,所以选项正确,故选:ABD16、##【解析】求出、的值,即可求得椭圆的离心率.【详解】在椭圆中,,,则,因此,该椭圆的离心率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)18【解析】(1)易得,,进而有,再结合已知即可求解;(2)由(1)易得直线AP的方程为,,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,联立即可得与AP距离比较远的切线方程,从而即可求解.【小问1详解】解:由题意,将代入椭圆方程,得,又∵,∴,化简得,解得,又,,所以,∴,∴椭圆的方程为;【小问2详解】解:由(1)知,直线AP的方程为,即,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,化简可得,由,即,解得,所以与AP距离比较远的切线方程,因为与之间的距离,又,所以的面积的最大值为18、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长的求法(1)几何法,设圆的半径为,弦心距为,弦长为,则;(2)代数法,设直线与圆相交于,,联立直线与圆的方程,消去得到一个关于的一元二次方程,从而可求出,,根据弦长公式,即可得出结果.19、(1)没有95%把握认为“围棋迷”与性别有关.(2).【解析】(1)由频率分布直方图求得频率与频数,填写列联表,计算观测值,对照临界值得出结论;(2)根据分层抽样原理,用列举法求出基本事件数,计算所求的概率值【详解】(1)由频率分布直方图可知,所以在抽取的100人中,“围棋迷”有25人,从而列联表如下非围棋迷围棋迷合计男301545女451055合计7525100因为,所以没有95%的把握认为“围棋迷”与性别有关.(2)由(1)中列联表可知25名“围棋迷”中有男生15名,女生10名,所以从“围棋迷”中按性别分层抽样抽取的5名学生中,有男生3名,记为,有女生2名,记为.则从5名学生中随机抽取2人出赛,基本事件有:,,,,,,,,,,共10种;其中2人恰好一男一女的有:,,,,,,共6种;故2人恰好一男一女的概率为.【点睛】本题考查了频率分布直方图、独立性检验和列举法求概率的应用问题,是基础题20、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xxx气动放大器项目可行性研究报告(创业计划)
- 年产xx硅酸盐水泥项目可行性研究报告(项目说明)
- 小学英语素养展示活动
- 高三地理第一轮复习 3-3 气象灾害(第一、二课时)
- 高考地理一轮复习课件 2.2天气与气候
- 常见地貌类型-河流地貌课件高三地理一轮复习
- 一年级下册数学教案-第六单元两位数加一位数、整十数(3)-人教新课标
- 4.1常见地貌类型-风沙地貌和海岸地貌课件高中地理人教版(2019)必修一
- 1.2 地球运动的地理意义(第2课时 公转的地理意义)课件高中地理人教版(2019)选择性必修1
- 九年级第十六章电流做功与电功率复习学案
- 房建施工测量培训课件
- 《领导者的沟通技巧》课件
- 【公开课】Unit+1Reading+for+writing+课件-人教版(2019)选择性必修第二册
- 艾滋病的危害
- 露营营地简介演示
- 粘土小汽车教案
- 2024年新疆维吾尔自治区普通高中学业水平考试语文试题含答案
- 道路交通安全标志
- HACCP计划年度评审报告
- 影院设备施工方案
- 中职语文教案:高尔基(节选)教案
评论
0/150
提交评论