版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鸡兔同笼鸡兔同笼【知识精讲+典型例题+高频真题+答案解析】编者的话:同学们,恭喜你已经开启了奥数思维拓展的求知之旅,相信你已经正确规划了自己的学习任务,本套资料为小升初思维拓展、分班考、择校考而设计,针对小升初的高频知识点进行全面精讲,易错点逐个分解,强化练习高频易错真题,答案解析非常通俗易懂,可助你轻松掌握、理解、运用该知识点解决问题!2024年10月编者的话:同学们,恭喜你已经开启了奥数思维拓展的求知之旅,相信你已经正确规划了自己的学习任务,本套资料为小升初思维拓展、分班考、择校考而设计,针对小升初的高频知识点进行全面精讲,易错点逐个分解,强化练习高频易错真题,答案解析非常通俗易懂,可助你轻松掌握、理解、运用该知识点解决问题!2024年10月目录导航资料说明第一部分:知识精讲:把握知识要点,掌握方法技巧,理解数学本质,提升数学思维。第二部分:典型例题:选题典型、高频易错、考试母题,具有理解一题,掌握一类的优势。第三部分:高频真题:精选近两年统考真题,助您学习有方向,做好题,达到事半功倍的效果。第四部分:答案解析:重点、难点题精细化解析,犹如名师讲解,可以轻松理解。第一部分第一部分知识精讲知识清单方法技巧知识清单方法技巧方法:假设法,方程法,抬腿法,列表法公式1:(兔的脚数×总只数﹣总脚数)÷(兔的脚数﹣鸡的脚数)=鸡的只数;总只数﹣鸡的只数=兔的只数公式2:(总脚数﹣鸡的脚数×总只数)÷(兔的脚数﹣鸡的脚数)=兔的只数;总只数﹣兔的只数=鸡的只数公式3:总脚数÷2﹣总头数=兔的只数;总只数﹣兔的只数=鸡的只数公式4:鸡的只数=(4×鸡兔总只数﹣鸡兔总脚数)÷2;兔的只数=鸡兔总只数﹣鸡的只数公式5:兔总只数=(鸡兔总脚数﹣2×鸡兔总只数)÷2;鸡的只数=鸡兔总只数﹣兔总只数公式6:(头数x4﹣实际脚数)÷2=鸡公式7:4×+2(总数﹣x)=总脚数(x=兔,总数﹣x=鸡数,用于方程)公式8:鸡的只数:兔的只数=兔的脚数﹣(总脚数÷总只数):(总脚数÷总只数)﹣鸡的脚数.第二部分第二部分典型例题例题1:乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元.问:搬运过程中共打破了几只花瓶?【答案】3只【分析】假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元).实际上只得到115.5元,少得120-115.5=4.5(元).搬运站每打破一只花瓶要损失0.24+1.26=1.5(元).因此共打破花瓶4.5÷1.5=3(只).【详解】解:(0.24×500-115.5)÷(0.24+1.26)=3(只)答:共打破3只花瓶.例题2:学校组织新年游艺晚会,用于奖品的铅笔、圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支?【答案】铅笔176支,圆珠笔44支,钢笔12支【详解】从条件"铅笔数量是圆珠笔的4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作(0.60×4+2.7)÷5=1.02(元).现在转化成价格为1.02和6.3两种笔.用"鸡兔同笼"公式可算出,钢笔支数是(300-1.02×232)÷(6.3-1.02)=12(支).铅笔和圆珠笔共232-12=220(支).其中圆珠笔220÷(4+1)=44(支).铅笔220-44=176(支).例题3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元.问:两种文化用品各买了多少套?【答案】买普通文化用品3套,买彩色文化用品13套【详解】假设买了16套彩色文化用品,共需19×16=304(元)比实际多:304—280=24(元)一套普通文化用品比彩色文化用品少用:19—11=8(元)所以买普通文化用品:24÷8=3(套)买彩色文化用品16-3=13(套).答:买普通文化用品3套,买彩色文化用品13套.例题:4:一个学生做25道数学题,对一题得4分,不答不给分,答错一题倒扣1分.他有3道题未做,得了73分.问他共答对了几道题?【答案】解:设对了x道题,则答错25-3-x道题.
依题意列方程:
4x-(25-3-x)=73
4x-22+x=73
5x=95
x=19.
答:这个学生答对了19道题.第三部分第三部分高频真题1.某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?2.在同一个笼子中,有若干只鸡和兔,从笼子上看有40个头,从笼子下数有130只脚,那么这个笼子中装有兔、鸡各多少只?3.一些奇异的动物在草坪上聚会.有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚).如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙的2倍,那么其中独脚兽有几只?4.箱子里有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球。如果经过若干次后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?5.四年级的同学们去春游,按团体购票120张,共432元,其中单程票每张2元,往返票4元,那么单程票和往返票相差多少张?6.有一堆2元和5元的人民币,共39张,其中5元的人民币比2元的人民币多90元,求2元和5元的人民币各有多少张?7.某商场为招揽顾客举办购物抽奖.奖金有三种:一等奖1000元,二等奖250元,三等奖50元.共有100人中奖,奖金总额为9500元.问二等奖有多少名?8.一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?9.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票各买了多少张?10.有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?11.一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?12.从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?13.某托运公司托运250箱玻璃,规定每箱运费20元,若损失一箱,除不付运费外,还负责赔偿损失费100元.运到后共得到运费4400元,求损失多少箱?14.食品店上午卖出每千克为20元、25元、30元的3种糖果共100千克,共收入2570元.已知其中售出每千克25元和每千克30元的糖果共收入了1970元,那么,每千克25元的糖果售出了多少千克?15.小松鼠采松果,晴天每天可以采个,雨天每天只能采个.它一连几天采了个松果,平均每天采个.那么其中有几天是雨天呢?16.有红、黄、绿种颜色的卡片共有张,其中红色卡片的两面上分别写有和,黄色卡片的两面上分别写着和,绿色卡片的两面上分别写着和.现在把这些卡片放在桌子上,让每张卡片写有较大数字的那面朝上,经计算,各卡片上所显示的数字之和为.若把所有卡片正反面翻转一下,各卡片所显示的数字之和则变成.问黄色卡片有多少张?17.三()班有象棋、飞行棋共副,恰好可供全班名同学同时进行活动.象棋要人下一副,飞行棋要人下一副,则飞行棋和象棋各有几副?18.一个大人一餐能吃四个面包,四个幼儿一餐只吃一个面包,现有大人和幼儿共100人,一餐刚好吃100个面包,这100人中,大人和幼儿各有多少人?19.学校买回4个篮球和5个排球,一共用了185元,一个篮球比一个排球贵8元,篮球、排球的单价各多少元?20.新思维四年级举行数学竞赛,共20道试题。做对一题得分,没有做一题或做错一题都要倒扣分。李小明得了86分,问他做对了几道题?21.小学生智力竞赛时,某个学生解答了12道题,如果从100分开始算分,答对一题加10分,答错一题减10分,这个小学生最后得了160分,它答对了几道题?答错了几道题?22.实验小学五年级一班的47名同学去旅游,共租大、小8辆汽车,每辆汽车都坐满.已知每辆小汽车坐4人,每辆大车坐7人.大、小汽车各租了几辆车?23.个和尚个馍,大和尚人分个馍,小和尚人分个馍.问:大、小和尚各有多少人?24.乐乐有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.乐乐共存了多少钱?25.一个剧团去外地演出,休息一天,就要付出60元的剧场租金,演出一天,扣去场租、杂项开支,平均可收入240元.现租用剧场30天,演出共收入4200元,这个剧团演出多少天?26.甲、乙两人进行射击比赛,约定是每中一发记8分,脱靶一发扣3分,两人各打10发子弹,共得116分,其中甲比乙多22分,问甲、乙各中多少发?27.赵会计去银行取2000元补助费,他只想要2元、5元、10元的人民币,并想使2元、5元的人民币张数相等,且总张数为213张,那么2元、5元、10元的人民币各有多少张?28.春风小学3名云参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了多少道题?29.小建和小雷做仰卧起坐,小建先做了分钟,然后两人各做了分钟,一共做仰卧起坐次.已知每分钟小建比小雷平均多做次,那么小建比小雷多做了多少次?30.动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?31.犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只。已知犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角。那么,犀牛、羚羊、孔雀各有几只呢?32.大小猴子共35只,它们一起去采摘桃子。猴王不在的时候,一个大猴子一小时可采摘15千克,一个小猴子一小时可采摘11千克;猴王在场监督的时候,每个猴子不论大小每小时都可多采摘12千克。一天采摘了8小时,其中只有第一小时和最后一小时猴王在场监督,结果共采摘4400千克桃子。那么,在这群猴中,共有小猴多少只?33.文化宫电影院有座位2000个,前排票每张4元,后排票每张2.5元,已知前排票比后排票的总价少1100元,问该电影院有前排座和后排座各多少?34.全班46人去划船,共乘12只船,其中大船每船坐5人,小船每船坐3人.有多少只小船?有多少只大船?35.有鸡、鸭、兔一共34只,总共有76条腿,其中鸭的数量是鸡的2倍多3只,请问三种动物各有多少只?36.数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?37.现有数量相同的鸡和兔放在同一个笼子里,已知鸡脚比兔脚少32只。鸡和兔各有多少只?38.秦老师有面值5元和10元的人民币共20张,已知两种人民币总共160元,5元和10元的人民币各多少张?39.一只蛐蛐6条腿,一只蜘蛛8条腿.家里有蛐蛐和蜘蛛共12只,82条腿.问蛐蛐和蜘蛛各有多少只?40.有16位教授,他们之中有人带1个研究生,有人带2个研究生,也有人带3个研究生,其中带1个研究生的教授人数与带2个和3个研究生的教授总数的比是1:1,经统计他们共带了27个研究生.问:带2个研究生的教授有几人?41.李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,问李明、张亮各打了多少天?42.二年级两个班共有学生人,其中少先队员有人,又知一班少先队员占全班人数的,二班少先队员占全班人数的,求两个班各有多少人?43.李华参加射击比赛,共打20发,规定每中一发记10分,脱靶一发则倒扣6分,结果得了168分,他一共打中了多少发?参考答案:1.31人【详解】对2道,3道,4道题的人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样兔脚数=4,鸡脚数="2.5,"总脚数=144,总头数=39.对4道题的有(144-2.5×39)÷(4-1.5)=31(人).2.兔25只、鸡15只【分析】假设全是兔子,那么就有40×4=160只脚,这就比已知的130只脚多出了160-130=30只脚,因为1只兔比1只鸡多4-2=2只脚,因此可求得鸡的只数,进而求得兔的只数.【详解】解:假设全是兔子,则鸡就有:(40×4-130)÷(4-2)=30÷2=15(只);兔子有:40-15=25(只);答:笼中有兔25只、鸡15只.3.7只【详解】把2个四脚蛇和1个双头龙捆绑在一起,则是4头12脚,即1头3脚,同三脚猫是一样的,所以可以假设都是1头3脚,则有3×58=174只脚,但只有160只脚,差了174-160=14只脚,替换:14÷2=7只,故有7只独脚兽.4.106个【分析】因为红球是白球的3倍多2个,每次取15个,最后剩下53个,所以对3倍的白球,每次取15个,最后应剩51个。因为白球每次取7个,最后剩下3个,所以对3倍的白球,每次取7×3=21个,最后应剩3×3=9个。因此,共取了(51-3×3)÷(7×3-15)=7(次),再分别求出红球、白球数量,据此解答即可。【详解】(51-3×3)÷(7×3-15)=42÷6=7(次)红球有15×7+53=105+53=158(个)白球有7×7+3=49+3=52(个)原来红球比白球多158-52=106(个)答:箱子里原有红球数比白球数多106个。【点睛】本题考查鸡兔同笼,解答本题的关键是掌握解决鸡兔同笼问题的计算方法。此题也可以理解为盈亏问题。红球去掉2个后就是白的3倍,如果将3个红球和1个白球对应,那么就相当于按照15个去分组和按照21个去分组,剩余分别为51和9,这样为盈盈问题。5.72张【详解】假设全部买的是往返票,那么共需(元),比实际多花了48元,这48元是因为把每张单程票假设成往返票多出的,每张单程票看成往返票则增加2元,可知48元中有几个2元就有几张单程票,即单程票有24张,相差72张.6.2元:15张
5元:24张【分析】根据题干,设5元的有x张,则2元的就是39﹣x张,再根据等量关系:5元的张数×5﹣2元的张数×2=90元,据此列出方程解决问题.【详解】解:设5元的有x张,则2元的就是39﹣x张,根据题意可得方程:5x﹣2(39﹣x)=905x﹣78+2x=907x=168x=2439﹣24=15(张)答:2元的有15张,5元的有24张.7.13名【详解】假设全是三等奖,共有:9500÷50=190(人)中奖,比实际多:190-100=90(人)1000÷50=20,也就是说:把20个三等奖换成一个一等奖,奖金总额不变,而人数减少了:20-1=19(人)250÷50=5,也就是说:把5个三等奖换成一个二等奖,奖金总额不变,而人数减少了:5-1=4(人).因为多出的是90人,而:90=19×2+4×13.即:要使总人数为100,只需要把20×2=40个三等奖换成2个一等奖,把5×13=65个三等奖换成13个二等奖就可以了.所以,二等奖有13个人.8.720吨【分析】要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨.利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨).根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车.这样每辆小卡车能装144÷9=16(吨).由此可求出这批钢材有多少吨.【详解】解:4×36÷(45-36)×45=720(吨)答:这批钢材有720吨.9.解:假设全是20分的邮票.10元=1000分35×20=700(分)1000-700=300(分)50-20=30(分)50分的邮票:300÷30=10(张)20分的邮票:35-10=25(张)【详解】鸡兔同笼按鸡兔同笼来分析,先假设这些张邮票全是20分的,比1000分少的钱数,是误把50分的少算了30分,接着再算一下少的钱数里共有多少个30分,也就是多少张50分的数.20分的数也就是用总张数减去这个数.10.第一次90分,第二次80分【分析】需要转化的鸡兔同笼问题,找相同点转化【详解】如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是8×6-2×(15-6)=30(分).两次相差120-30=90(分).比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)÷(6+10)=5(题).因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题).第一次得分5×19-1×(24-19)=90.第二次得分8×11-2×(15-11)=80.11.大和尚25个,小和尚75个【分析】我们把大碗换小碗,换小碗盛粥。把一大碗粥分成三小碗粥,则原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥。【详解】假设都是小和尚,只能喝(碗)粥;有一个大和尚被当成小和尚会少(碗)粥;一共少了(碗)粥;所以大和尚有(个)小和尚有(个)答:大和尚有25个,小和尚有75个。【点睛】考查了鸡兔同笼问题。这类问题一般使用假设法解题。12.36人抬水,20人挑水【详解】假设全是抬水,38根扁担应担38个桶,而实际上是58个桶,为什么少了(个)桶呢?因为当我们把一个挑水的当作抬水的就会少算(个)桶,所以有(人)在挑水,拾水的扁担数是(根),抬水的人数是(人).13.共损坏5箱【详解】假设安全运到,应得运费20×250元,而实际少得20×250-4400元,又知道损失一箱不但得不到运费,还赔偿100元,损坏箱数即可求出.(20×250-4400)÷(100+20)=(5000-4400)÷120=600÷120=5箱14.26千克【详解】每千克25元和每千克30元的糖果共收入了1970元,则每千克20元的收入:元,所以卖出:千克,所以卖出每千克25元和每千克30元的糖果共千克,相当于将题目转换成:卖出每千克25元和每千克30元的糖果共70千克,收入1970元,问:每千克25元的糖果售出了多少千克?转换成了最基本的鸡兔同笼问题.关键在将三种以及更多的动物/东西,转化为两种最基本模型.即:抓住转化后的“头”与“脚”.15.5天【详解】小松鼠一共采了(天),假设每天都是晴天,那么一共可以采(个),而实际上少采了(个),少天晴天,就少采(个),所以一共有雨天:(天).16.11张【详解】开始的时候,黄色和绿色的卡片上都是3,红色卡片上是2.如果全部是红色卡片,那么数字之和为:,比实际的少:.每增加一张黄色或绿色卡片,那么数字就会增加:.那么,黄色和绿色卡片之和:(张),红色卡片有:(张).翻转过来后,红色和黄色卡片上都是1,绿色卡片上是2.红色卡片有66张,剩下的绿色和黄色卡片上的数字之和为:.如果34张卡片都是黄色的,那么这34张卡片上的数字之和为:,比实际的少:.每增加一张绿色卡片,数字之和就会增加:,所以,绿色卡片有:(张),黄色卡片有:(张).17.飞行棋6副,象棋8副【详解】假设只有飞行棋,那么一共有(名)同学参与活动,多出(名)同学,多一副象棋,就会少(名)同学,可知一共有(副)象棋,(副)飞行棋.18.大人有20人,幼儿有80人【详解】这是一个鸡兔同笼问题的变形.解:设有x个幼儿,则有个大人,列方程(人)19.排球:17元
篮球:25元【分析】假设买的是9个排球,可以少花8×4=32(元),即如果买9个排球会花185-32=153(元),当然,也可以假设买的是9个篮球.会多花8×5=40(元),即如果买9个篮球会花185+40=225(元)【详解】解法一:假设买回的是9个排球排球的单价:(185-8×4)÷9=17(元)篮球的单价:17+8=25(元)解法二:假设买回的是9个篮球篮球的单价:(185+8×5)÷9=25(元)排球的单价:25-8=17(元)答:排球的单价是17元,篮球的单价是25元.20.18道【分析】假设刘小明道题全对,可得分(分),但他实际上只得分,少了(分),因此他没做或做错了一些题。由于做对一道题得分,没做或做错一道题倒扣分,所以没做或做错一道题比做对一道题要少(分)。分中含有多少个,就是刘小明没做或做错多少道题。进而求出做对的题目。【详解】(20×5-86)÷(5+2)=14÷7=2(道)20-2=18(道)答:他做对了18道题。【点睛】此题属于鸡兔同笼问题,运用了假设法来解答。要熟练掌握其中的做题思路。也可用列方程或枚举法来解答。21.答对:9道
答错:3道【分析】根据“答对一题加10分,答错一题减10分”可知:答错一题比答对一题少得10+10=20分;全部答对12道题共得100+12×10=220分;假设全部答对得分是220分,比160分多得220﹣160=60(分),那么他答错了:60÷20=3(道);所以答对:12﹣3=9道题.【详解】解:假设全答对,错题:(100+12×10﹣160)÷(10+10)=60÷20=3(题)对题:12﹣3=9(题)答:他答对了9道题,答错了3道题.22.大汽车:5辆
小汽车租了:3辆【详解】解:假设全是大汽车,那么小汽车有:(7×8﹣47)÷(7﹣4)=9÷3=3(辆)大汽车有:8﹣3=5(辆)答:大汽车租了5辆,小汽车租了3辆.23.大和尚30个,小和尚70个【详解】本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设人全是大和尚,那么共需馍个,比实际多(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少(个),因为,故小和尚有70人,大和尚有(人).同样,也可以假设人都是小和尚,同学们不妨自己试试.24.276分【详解】假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比一个2分币多3分,所以5分币有:(个);2分币有:(个).所以乐乐共存钱:(分).25.20天【详解】根据题干可知,假设30天全部演出,则实际收入应该是240×30=7200(元),这就比已知的收入4200元多了7200-4200=3000(元),因为演出一天,可收入240元,休息一天,不仅不能得到240元,还要付出60元,所以可以看做是演出一天比休息一天可以多收入240+60=300(元),所以可求出休息了:3000÷300=10(天),则实际演出了30-10=20(天).解:假设演出30天,则休息了:(240×300-4200)÷(240+60)=3000÷300=10(天)则实际演出了:30-10=20(天)答:这个剧团演出了20天.26.甲中9发
乙中7发【详解】本题是对猜想与尝试解决问题和鸡兔同笼(相同)知识点的综合运用.可以用假设法解答.甲得分=(116+22)÷2=69(分),乙得分=69-22=47(分).假设甲中了10发,则没中的是=(10×8-69)÷(8+3)=1(发),则甲中了10-1=9(发);同理,假设乙中了10发,则没中的是=(10×8-47)÷(8+3)=3(发),则乙中了10-3=7(发).27.2元、5元各有10张,10元的有193张【分析】本题有3个未知数,由于2元、5元的张数相等,实际上有两个未知数,如果假设这个213张都是2元的,那么减少的2000-2×213=1574(元)钱里面既有5元变成2元减少的,也有10元变成2元减少的,同时又没有其他已知条件,这样是无法解答的,如果假设这213张人民币都是5元的,同上面的分析一样,这道题也无法解答.如果假设这213张人民币都是10元的,那么多出的10×213-2000=130(元)钱里面既有2元变成10元而增加的,也有5元钱变成10元而增加的,由于2元的张数与5元的同样多,所以我们把1张2元和1张5元的合在一起看成1份,这1份有2+5=7(元),假设变成10元后,这1份是10×2=20(元),每份增加了20-7=13(元),一共增加130元,就可以求出有130÷13=10(张),也就是求出了2元、5元各有10张,用213-10×2=193(张),这就是10元的张数.【详解】解:2元、5元的张数:(10×213-2000)÷(10×2-2-5)=(2130-2000)÷(20-7)=130÷13=10(张)10元的张数:213-10×2=193(张)答:2元、5元各有10张,10元的有193张.28.20【详解】三人共得(分),比满分(分)少(分)因此三个人共做错:(道)题,共答对了(道)题29.56次【详解】假设小建每分钟做仰卧起坐的次数与小雷一样多,这样两人做仰卧起坐的总次数就减少了(次),由此可知小雷每分钟做了(次),进而可以分别求出小建每分钟做的次数以及两人分别做仰卧起坐的总次数之差.假设小建每分钟做仰卧起坐的次数与小雷一样多,两人做仰卧起坐的总次数就减少:(次)小雷每分钟做:(次);小建每分钟做:(次)小建一共做:(次);小雷一共做:(次)小建比小雷多做:(次)30.大动物:25只
小动物:75只【详解】100×3-100=200(斤)小动物:200÷(3-)=75(只)大动物:100-75=25(只)所以大动物有25只,小动物有75只.31.犀牛8只,羚羊6只,孔雀12只【分析】这道题有三种不同的动物混合在一起,这样假设起来会比较麻烦,像前面的题一样,我们可以观察一下:虽然有三种不同的动物,但是犀牛和羚羊都是4只脚,这样,只看脚数,就可以把孔雀与这两种动物分开,转化成我们熟悉的“鸡兔同笼”问题,然后再通过犄角的不同,把犀牛和羚羊分开,也就是说我们需要做两次“鸡兔同笼”。【详解】假设26只都是孔雀,那么就有脚:(只),比实际的少:(只),这说明孔雀多了,需要增加犀牛和羚羊。每增加一只犀牛或羚羊,减少一只孔雀,就会增加脚数:(只)。所以,孔雀有(只),犀牛和羚羊总共有(只)。假设14只都是犀牛,那么就有犄角:(只),比实际的少:(只),这说明犀牛多了羚羊少了,需要减少犀牛增加羚羊。每增加一只羚羊,减少一只犀牛,犄角数就会增加:(只),所以,羚羊的只数:(只),犀牛的只数:(只)。【点睛】这道题出现了三种动物,关键是寻找不同动物的相同点,把三种动物化为两类,先使用“鸡兔同笼”问题的解法把另外特殊的一种区分出来,再使用另外条件区分具有相同点的动物。32.20只【详解】假设猴王一分钟都不在,那么可以采摘4400-35×12×2=3560千克;假设全是大猴,则可以采摘35×15×8=4200千克,所以相差的640千克是小猴子采摘的;故有小猴子:640÷8÷(15-11)=20只。33.前座:600个
后座:1400个【分析】假设这2000张票全是后排票,那么前排票的总价是0,而后排票的总价是2.5×2000=5000(元),但事实上只少1100元,相差的5000-1100=3900(元),可以拿去1张后排票换上1张前排票,这样每换一次,后排票少2.5元,前排票多4元.换一次的差额是4+2.5=6.5(元),3900÷6.5=600,即需替换600次,所以有600张前排票.【详解】解:(2.5×2000-1100)÷(4+2.5)=3900÷6.5=600(张)2000-600=1400(张)答:前座有600个座位,后座有1400个座位.34.小船:7只
大船:5只【详解】解:假设全是大船,则小船的只数为:(12×5﹣46)÷(5﹣3)=14÷2=7(只)大船有:12﹣7=5(只)答:小船有7只,大船有5只.35.兔4只,鸡9只,鸭21只【分析】鸡、鸭、兔三种动物中,鸡和鸭都只有2条腿,兔有4条腿,可以通过假设法将2条腿的动物先求出来,再进一步计算。【详解】假设这34只动物全是兔子,则腿共有:34×4=136(条)136-76=60(条)那么鸡鸭共有60÷(4-2)=60÷2=30(只)鸡:(30-3)÷(1+2)=27÷3=9(只)鸭:9×2+3=18+3=21(只)兔子:34-9-21=4(只)答:兔有4只,鸡有9只,鸭有21只。【点睛】已知两个对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度区块链技术应用与研究开发合同3篇
- 2024年度新建房屋销售合作合同2篇
- 二零二四年电影字幕翻译服务合同
- 楼房施工装修合同
- 珠海出租车租赁合同范本
- 二零二四年度知识产权许可合同:专利权人将其专利授权给他人使用
- 二零二四年钢管厂北换热站运维管理及效率改进合同
- 二零二四年度旅游服务合同(含线路规划与导游)
- 2024年度教育培训合同(职业认证)2篇
- 二零二四年度标的为00套公寓的销售合同
- 物理说题比赛(共3页)
- 安全环保部工作现状与管理思路创新
- 度无锡市高技能人才培养基地工作自评报告
- 血凝报告单模板
- 标准坐标纸(共3页)
- 高三生物二轮复习 专题二、细胞的代谢教学案
- PBT装置主要设备操作规程20160329
- 初中音乐-变声期的嗓音保护-课件PPT课件
- 护理的三基三严培训计划
- 50立方油罐容积表
- 管片生产管理办法(最终)
评论
0/150
提交评论