5.1.1 任意角和弧度制(1)-任意角-2020-2021学年高一数学同步练习和分类专题教案(人教A版2019必修第一册)_第1页
5.1.1 任意角和弧度制(1)-任意角-2020-2021学年高一数学同步练习和分类专题教案(人教A版2019必修第一册)_第2页
5.1.1 任意角和弧度制(1)-任意角-2020-2021学年高一数学同步练习和分类专题教案(人教A版2019必修第一册)_第3页
5.1.1 任意角和弧度制(1)-任意角-2020-2021学年高一数学同步练习和分类专题教案(人教A版2019必修第一册)_第4页
5.1.1 任意角和弧度制(1)-任意角-2020-2021学年高一数学同步练习和分类专题教案(人教A版2019必修第一册)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章三角函数课时5.1任意角和弧度制5.1.1任意角1.了解任意角的概念,能正确区分正角、负角和零角.2.掌握象限角的概念,并会用集合表示象限角.3.掌握终边相同的角的含义及其表示方法,并能解决有关问题.基础过关练题组一对任意角概念的理解1.将射线OM绕端点O按逆时针方向旋转120°所得的角为()A.120° B.-120° C.60° D.240°2.已知角α在平面直角坐标系中如图所示,其中射线OA与y轴正半轴的夹角为30°,则α的值为()A.-480° B.-240° C.150° D.480°3.从13:00到14:00,时针转过的角为,分针转过的角为.

题组二终边相同的角与区域角4.在0°~360°范围内,与-80°角终边相同的角是()A.80° B.100° C.240° D.280°5.设α=-300°,则与α终边相同的角的集合为()A.{α|α=k·360°+300°,k∈Z}B.{α|α=k·360°+60°,k∈Z}C.{α|α=k·360°+30°,k∈Z}D.{α|α=k·360°-60°,k∈Z}6.角α与角β的终边关于y轴对称,则α与β的关系为()A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z7.与-2020°角终边相同的最小正角是.

8.已知射线OA,OB如图.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.

9.已知角θ的7倍角的终边与角θ的终边重合,且0°<θ<360°,求满足条件的角θ的集合.题组三象限角的判定10.-361°角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限11.下列命题正确的是()A.终边在x轴的非正半轴上的角是零角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β的终边相同12.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限角},D={θ|θ为小于90°的正角},则下列等式中成立的是()A.A=B B.B=CC.A=CD.A=D13.若α是第四象限角,则180°-α是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角14.(多选)下列四个命题是真命题的有()A.-75°角是第四象限角B.225°角是第三象限角C.575°角是第二象限角D.-315°角是第一象限角15.若α=k·360°+45°,k∈Z,则α2是第能力提升练题组一对任意角概念的理解1.若α与β的终边互为反向延长线,则有()A.α=β+180°B.α=β-180°C.α=-βD.α=β+(2k+1)·180°,k∈Z2.(多选)下列条件中,能使α和β的终边关于y轴对称的是()A.α+β=90°B.α+β=180°C.α+β=k·360°+90°(k∈Z)D.α+β=(2k+1)·180°(k∈Z)题组二终边相同的角与区域角3.与角-390°终边相同的最小正角是()A.-30° B.30° C.60° D.330°4.终边在直线y=-x上的所有角的集合是()A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}5.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角所表示的范围(阴影部分)是()6.如果角α与x+45°的终边相同,角β与x-45°的终边相同,那么α与β的关系是()A.α+β=0°B.α-β=0°C.α+β=k·360°(k∈Z)D.α-β=k·360°+90°(k∈Z)7.若角α满足180°<α<360°,角5α与α有相同的始边与终边,则角α=.

8.写出如图所示的阴影部分(包括边界)的角α的范围.题组三象限角的判定9.2019°角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.(多选)设α是第三象限角,则α2的终边所在的象限可能是A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知集合{α|α=k·90°+45°,k∈Z}.(1)该集合中有几种终边不相同的角?(2)该集合中有几个在-360°~360°范围内的角?(3)写出该集合中的第三象限角.

12.半径为1的圆的圆心位于坐标原点,点P从点A(1,0)出发,以逆时针方向匀速沿圆周旋转,已知点P在1s内转过的角度为θ(0°<θ<180°),经过2s到达第三象限,经过14s后又回到了出发点A处,求θ.答案全解全析基础过关练1.A按逆时针方向旋转形成的角是正角,所以射线OM绕端点O按逆时针方向旋转120°所得的角为120°.2.D由角α按逆时针方向旋转,可知α为正角.又旋转量为480°,∴α=480°.3.答案-30°;-360°解析经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.4.D与-80°角终边相同的角可表示成α=k·360°-80°,k∈Z,令k=1,得α=280°,故选D.5.B因为α=-300°=-360°+60°,所以角α的终边与60°角的终边相同,故选B.6.B解法一(特值法):令α=30°,β=150°,则α+β=180°.解法二(直接法):因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.7.答案140°解析与-2020°角终边相同的角的集合为{β|β=-2020°+k·360°,k∈Z},当k=6时,得到与-2020°角终边相同的最小正角,即β=-2020°+6×360°=140°.8.解析(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)的角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.9.解析由题意知,7θ=θ+k·360°,k∈Z,即6θ=k·360°,k∈Z,∴θ=k·60°,k∈Z,由0°<θ<360°,得0°<k·60°<360°,k∈Z,∴0<k<6,k∈Z,即k=1,2,3,4,5,∴角θ的集合为{60°,120°,180°,240°,300°}.10.D因为-361°角的终边和-1°角的终边相同,所以它的终边落在第四象限,故选D.11.D终边在x轴的非正半轴上的角为k·360°+180°,k∈Z,零角为0°,所以A错误;480°角为第二象限角,但不是钝角,所以B错误;285°角为第四象限角,但不是负角,所以C错误;D正确.故选D.12.D直接根据角的分类进行求解,容易得到答案.13.C因为α是第四象限角,则角α应满足:k·360°-90°<α<k·360°,k∈Z,所以-k·360°<-α<-k·360°+90°,k∈Z,则-k·360°+180°<180°-α<-k·360°+270°,k∈Z,当k=0时,180°<180°-α<270°,故180°-α为第三象限角.14.ABD-75°=-360°+285°是第四象限角;225°=180°+45°是第三象限角;575°=360°+215°是第三象限角;-315°=-360°+45°是第一象限角,故A,B,D为真命题.15.答案一或三解析∵α=k·360°+45°,k∈Z,∴α2=k·180°+22.5°,当k为偶数,即k=2n,n∈Z时,α2=n·360°+22.5°,n∈Z,∴α当k为奇数,即k=2n+1,n∈Z时,α2=n·360°+202.5°,n∈Z,∴α综上,α2能力提升练1.Dα与β的终边互为反向延长线,则两角的终边相差180°的奇数倍,可得α=β+(2k+1)·180°,k∈Z.2.BD假设α,β为0°~180°内的角,如图所示,因为α,β的终边关于y轴对称,所以α+β=180°,所以B满足条件;结合终边相同的角的概念,可得α+β=k·360°+180°=(2k+1)·180°(k∈Z),所以D满足条件,A、C都不满足条件.3.D依题意,-390°+360°=-30°,-30°+360°=330°,故选D.4.D直线y=-x如图所示,由图可知,终边落在直线y=-x上的所有角的集合是{α|α=k·180°-45°,k∈Z},故选D.5.C依题意可知选C.6.D由题意知α=(x+45°)+k1·360°(k1∈Z),β=(x-45°)+k2·360°(k2∈Z),∴α-β=(k1-k2)·360°+90°=k·360°+90°(k∈Z).7.答案270°解析∵角5α与α具有相同的始边与终边,∴5α=k·360°+α,k∈Z,得4α=k·360°,k∈Z,∴α=k·90°,k∈Z.又180°<α<360°,∴α=270°.8.解析(1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式,所以题图(1)中阴影部分的角α的范围可表示为{α|-150°+k·360°≤α≤45°+k·360°,k∈Z}.(2)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与360°-60°=300°角终边相同的角可写成300°+k·360°,k∈Z的形式,所以题图(2)中阴影部分的角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.9.C由题意,可知2019°=360°×5+219°,所以2019°角和219°角终边相同,又219°角是第三象限角,所以2019°角是第三象限角,故选C.10.BD解法一:如图所示,作各个象限的角平分线,标号Ⅲ所在的区域即为α2所在的区域,解法二:由α是第三象限角得180°+k·360°<α<270°+k·360°,k∈Z,∴90°+k·180°<α2<135°+k·180°,k∈Z当k为偶数时,设k=2n(n∈Z),则90°+n·360°<α2<135°+n·360°(n∈Z),∴α当k为奇数时,设k=2n+1(n∈Z),则270°+n·360°<α2<315°+n·360°(n∈Z)∴α2∴α2为第二或第四象限角,易错警示对象限角的运算,要将“周期”化为360°再进行判断,当“周期”是360°的约数时,要对整数k进行分类讨论,解题时要防止遗漏导致错误.11.解析(1)由k=4n,4n+1,4n+2,4n+3(n∈Z),知在给定的角的集合中终边不相同的角共有四种.(2)由-360°≤k·90°+45°<360°,得-92≤k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论