版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.1集合的基本运算(1)课时教学设计一、课题:集合的基本运算(1)二、教学内容1.集合并集的含义与运算;2.集合交集的含义与运算;3.区分交、并运算的运算符号,会进行简单的离散型和连续型集合的交、并运算.三、教学目标学生能通过类比实数运算,结合具体实例,能理解集合并集、交集运算的含义,掌握简单的集合运算,并学会使用Venn图、数轴等几何方法表达集合的关系及运算,体会直观图示对理解抽象概念的作用,从而体会数形结合在理解集合中的重要作用,发展学生数学运算的核心素养.四、教学重难点教学重点:理解并集、交集的含义,并会进行简单的集合基本运算.教学难点:区分交、并集运算符号,掌握集合的交、并运算.五、教学设计过程问题1:我们知道,实数有加法运算,两个实数可以相加,集合是否也有类似的运算呢?请同学们考察下列两组集合,你能说出集合C与集合A,(1)A={1,3,5}(2)A={x|x师生活动:引导学生通过观察集合,并借助Venn图得出集合间的关系,并发现集合C的元素全部由集合A,B构成,并且没有元素不属于集合设计意图:学生通过观察具体集合,发现集合并集的运算实质,获得数学活动经验,回顾上节知识的同时也回顾了数形结合解决问题的思想.追问:你能用集合的语言描述集合C与集合A,B师生活动:学生尝试将自然语言转化为集合语言,老师进行必要的指导和补充.设计意图:让学生学会用数学的语言来描述数学问题,获得概念的严谨表述.并集概念:一般地,由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集,记作:A∪B;读作“A并B”.用描述法表示为A∪B={x|x∈A,或x∈B}Venn图表示为:例1:设A={4,5,6,8},B={3,5,7,8},求A∪B.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.设计意图:通过具体例题,深化并集概念,练习离散集合的并集运算.例2:设集合A={x|–1<x<2},集合解:用数轴表示:则A∪B={x|–1追问:若中间−1、师生活动:学生思考后回答.设计意图:让学生做题时注意把握细节,并体会集合端点对集合并集结果的影响.问题2:下列关系式成立吗?(1)师生活动:学生根据并集的概念思考后易得到答案.设计意图:让学生体会特殊集合的并集运算,考虑问题中特殊情况的处理.追问:若A⊆B则师生活动:可以引导学生借助Venn图来理解和解决问题.设计意图:在问题2的基础上,继续让学生进一步理解并集概念,了解集合间的关系与集合运算的联系,并学会用Venn图来直观的研究问题.问题3:考察下面的问题,集合A,B与集合C之间有什么关系?(1)A=(2)A=师生活动:学生观察两组集合,发现集合C中的元素是由集合A,B中共有的元素组成的,引导学生注意并且不能有漏掉的.如果学生总结不严谨,可以给出集合D={x|x是立德中学今年在校的身高超过170cm的高一年级女同学},通过比较C与D的不同点,来引导、帮助学生更加严谨地归纳总结交集的概念,强调是集合设计意图:通过给出两个实例,让学生们自己观察并交流,找出集合A,B与集合C之间的关系,通过模仿上面并集的概念,锻炼了学生观察、类比以及总结的能力.交集概念:一般地,由属于集合A且属于集合B的所有元素组成的集合,成为用Venn图表示为:例3:立德中学开运动会,设A={x|xB={x|x解:A∩B就是立德中学高一年级中既参加百米赛跑又加跳高比赛的同学组成的集合.所以,A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的同学}.例4:设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1和l2的位置关系.解:平面内直线l1和l2可能有三种位置关系,即相交于一点,平行或重合.(1)直线l1和l2相交于一点P,可表示为L设计意图:学生通过应用交集运算解决实际问题和几何问题,巩固了对交集概念的理解,实现了交集运算的实际应用,同时也考察了学生分类讨论的能力.问题4:下列交集运算的结果是什么呢?(1)A∩A=?(2)A∩∅=?师生活动:学生借助Venn图,思考讨论后给出答案.设计意图:让学生在问题2和交集概念的基础上,类比并集的概念,加强概念横向间的联系.问题5:请同学们对比交集和并集的概念,从文字上面能发现什么不同吗?师生活动:学生指出交集中使用的是“且”字,并集中使用的是“或”字.设计意图:让学生对比交集和并集的概念,加强概念横向间的对比.追问:如果我们称大于3或大于5的实数为集合A,那么3是集合A的元素吗?5呢?6呢?这三个元素有什么不同呢?师生活动:学生经讨论后发现,3不是集合A的元素,5和6是集合A的元素,其中3不满足大于3也不满足大于5,5只满足其中第一个,6两个都满足。设计意图:让学生进一步理解或的含义,只要元素属于其中一个集合,即属于并集.追问:交集的符号是∩,并集的符号是∪,交集概念中用且,并集概念中用或,你能区分两者的符号吗?师生活动:引导学生观察“∩”和“且”轮廓的相似,加强记忆,也可以鼓励学生自己找到记忆方法。设计意图:让学生注意区分交集和并集的符号异同,记忆交集和并集的符号.六、课堂检测与评价1.设A={x|x是小于9的正整数},B={1,2,3},C={3,4,5,6}.求A∩B,A∩C,A∩(B∪2.已知集合A={x|3<x<7}),B={x|2<x<10},设计意图:让学生及时巩固所学,检测离散型和连续型两类集合基本运算的掌握情况.1.3.2集合的基本运算(2)课时教学设计一、课题:集合的基本运算(2)二、教学内容1.在具体情境中,理解全集的含义;2.理解补集的含义,会求给定子集的补集;3.能进行简单的集合混合运算.三、教学目标在学习了交集和并集运算的基础上,学生能通过类比实数减法运算,结合具体实例,能理解集合全集和补集运算的含义,掌握简单的补集运算,并学会使用Venn图、数轴等几何方法表达全集和补集运算,进一步体会直观图示对理解抽象概念的作用,从而体会数形结合在理解集合中的重要作用,发展学生数学运算的核心素养.四、教学重难点教学重点:理解全集和补集的含义,并会进行简单的集合补集运算.教学难点:正确理解全集的含义,能够进行集合的混合运算.五、教学设计过程引言:在上一节中,我们通过类比实数的加法运算,学习了集合的并集运算,并在并集的基础上学习了交集运算,请同学们完成下题:若集合A={−2,2,4,6},B=xx2+x−12<0,求A∩B师生活动:学生完成题目,过程中老师注意指出学生问题。设计意图:学生复习已有知识,为本节学习全集和补集热身.问题1:在实数范围内解方程x2+x−12=0师生活动:引导学生观察两个方程解的不同是由于研究问题的框定范围不同导致的,发现确定研究范围的重要性。设计意图:学生通过观察具体问题,体会研究问题的范围对结果的重要性。全集概念:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universeset),通常记作U.Venn图一般用矩形表示为:UU需要指出的是:全集并不是固定不变的,在具体的研究问题中全集是具体的,一般情况下我们把R作为全集,特定情况下也可以给定全集,比如在自然数范围内解方程,全集就是自然数。问题2:我们知道,实数有减法运算,比如9−6=3,9中去掉6剩下的部分就是3,当然我们也可以说9中去掉3剩下的部分就是6,集合是否也有类似的运算呢?请同学们考察下列两组集合,你能说出全集U中去掉集合A的元素剩下元素组成的集合,与集合B(1)A={1,3,5}(2)A={x|x师生活动:引导学生通过观察集合,并借助Venn图得出集合间的关系,并发现全集U中去掉集合A的元素剩下元素组成的集合就是集合B,同理全集U中去掉集合B的元素剩下元素组成的集合就是集合A。设计意图:学生通过观察具体集合,对比实数减法运算,发现补集的运算实质,获得数学活动经验.追问:你能计算一下A∪B,A∩B师生活动:学生计算得到A∪B=U,设计意图:让学生进一步用数学语言描述给定集合与其补集的集合关系,并用自然语言理解.补集概念:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,记作∁UA,即∁UVenn图表示为:注意:补集是相对于全集而言的,不可单独出现。问题3:下列关系式成立吗?(∁UA)∪A=U,(∁UA师生活动:学生根据补集的概念,借助Venn图思考后易得到上述式子是正确的.设计意图:让学生掌握集合A与∁UA的关系,理解A与追问:∁AA=师生活动:学生根据补集和空集概念得到∁A设计意图:可以引导学生注意空集的特殊性,进一步理解补集.例5:设U={x︱x是小于9的正整数解:U=1,2,设计意图:通过具体例题,深化补集概念,练习离散集合的补集运算.例6:已知集合A={x|3≤x<8}, 解:借助Venn图可得,∁R设计意图:通过具体例题,深化补集概念,练习连续集合的补集运算.例7:已知集合A={x|解:借助Venn图可得,CR(A∪B)={x|x≤1}设计意图:通过具体例题,使学生掌握集合的交并补的混合运算.例8:设全集U=x︱x是三角形,A=x解:根据三角形的分类可知A∩BA∁设计意图:学生通过应用补集运算表示几何关系,巩固了对补集概念的理解。六、课堂检测与评价1.设A={x|x是小于9的正整数},B={1,2,3},C={3,4,5,6}.求A∩B,A∩C,A∩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电子琴研发与生产合作合同(琴行与科技公司)
- 2024年度广告创意设计与制作合同书
- 2024年度产学研合作合同:高校与企业产学研合作项目
- 大学英语语法课件教学
- 《食物中毒与预防》课件
- 端午节课件 的
- 《全国税务反诈骗》课件
- 青岛版四年级下册数学全册教案
- xx集团中高层人力资源管理体系培训课件
- 2024年度砌块需求与供应量预测合同3篇
- 青岛版(六三制2023秋)科学 三年级上册 4.16 空气占据空间吗(教案)
- 档案整理及数字化服务方案(技术标 )
- 心房颤动诊断和治疗中国指南2023版解读
- 类风湿性关节炎的护理查房教学ppt
- 混合式教学学生问卷调查
- 第二单元《放牧》大单元(教学设计)人音版音乐一年级下册
- 小学三至六年级英语单词表
- (完整版)六宫格数独题目
- 企业风险辨识清单
- 装修增减项单模板
- 旅游景区公共信息导向系统规范与设计(旅游)
评论
0/150
提交评论