高考总复习知识点(四川数学理科)_第1页
高考总复习知识点(四川数学理科)_第2页
高考总复习知识点(四川数学理科)_第3页
高考总复习知识点(四川数学理科)_第4页
高考总复习知识点(四川数学理科)_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一篇集合与常用逻辑用语第1讲集合及其运算1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B子集A中任意一个元素均为B中的元素A⊆B真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素AB空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁UA={x|x∈U,且x∉A}第2讲命题及其关系、充分条件与必要条件1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.2.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp是q的必要不充分条件p⇒/q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件pq且qp1.一个区别否命题与命题的否定是两个不同的概念.否命题同时否定原命题的条件和结论,命题的否定仅仅否定原命题的结论(条件不变).2.三个防范一是分清命题中的条件和结论,并搞清楚其中的关键词,如“≠”与“=”,“>”与“≤”,“且”与“或”,“是”与“不是”,“都不是”与“至少一个是”,“都是”与“不都是”等互为否定.第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)逻辑联结词命题中的“且”、“或”、“非”叫做逻辑联结词.(2)命题p∧q,p∨q,綈p的真假判断pqp∧qp∨q綈p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)常见的全称量词:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.1.一个区别逻辑联结词“或”与日常生活中的“或”是有区别的,前者包括“或此、或彼、或兼”三种情形,后者仅表示“或此、或彼”两种情形.有的含有“且”“或”“非”联结词的命题,从字面上看不一定有“且”“或”“非”等字样,这就需要我们掌握一些词语、符号或式子与逻辑联结词“且”“或”“非”的关系.如“并且”、“綉”的含义为“且”;“或者”、“≤”的含义为“或”;“不是”、“∉”的含义为“非”.2.两个防范一是混淆命题的否定与否命题的概念导致失误,綈p指的是命题的否定,只需否定结论.如(5)、(6);二是否定时,有关的否定词否定不当,如(6).3.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.4.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“綈p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真.第二章函数及其导数第1讲函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;则就称:f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法类型x满足的条件eq\r(2n,fx),n∈N*f(x)≥0eq\f(1,fx)与[f(x)]0f(x)≠0logaf(x)f(x)>0四则运算组成的函数各个函数定义域的交集实际问题使实际问题有意义3.函数值域的求法方法示例示例答案配方法y=x2+x-2y∈eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(9,4),+∞))性质法y=exy∈(0,+∞)单调性法y=x+eq\r(x-2)y∈[2,+∞)换元法y=sin2x+sinx+1y∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3,4),3))分离常数法y=eq\f(x,x+1)y∈(-∞,1)∪(1,+∞)第2讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2当x1<x2时,都有f(x1)<f(x2),则就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),则就说函数f(x)在区间D上是减函数续表图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值规律方法(1)对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:①可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;②可导函数则可以利用导数解之.(2)复合函数y=f[g(x)]的单调性规律是“同则增,异则减”,即y=f(u)与u=g(x)若具有相同的单调性,则y=f[g(x)]为增函数,若具有不同的单调性,则y=f[g(x)]必为减函数.规律方法求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.第3讲函数的奇偶性与周期性1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),则函数f(x)是奇函数关于原点对称2.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),则就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,则这个最小正数就叫做f(x)的最小正周期.[感悟·提升]1.两个防范一是判断函数的奇偶性之前务必先考查函数的定义域是否关于原点对称,若不对称,则该函数一定是非奇非偶函数;二是若函数f(x)是奇函数,则f(0)不一定存在;若函数f(x)的定义域包含0,则必有f(0)=0.2.三个结论一是若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称;若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称;二是若对任意x∈D都有f(x+a)=-f(x),则f(x)是以2a为周期的函数;若对任意x∈D都有f(x+a)=±eq\f(1,fx)(f(x)≠0),则f(x)也是以2a为周期的函数;三是若函数f(x)既是周期函数,又是奇函数,则其导函数y=f′(x)既是周期函数又是偶函数,因为y=f(x)是周期函数,设其周期为T,则有f(x+T)=f(x),两边求导,得f′(x+T)(x+T)′=f′(x),即f′(x+T)=f′(x),所以导函数是周期函数,又因为f(x)是奇函数,所以f(-x)=-f(x),两边求导,得f′(-x)(-x)′=-f′(-x)=-f′(x),即-f′(-x)=-f′(x),所以f′(-x)=f′(x),所以导函数是偶函数.4.正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.5.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f(-x)=±f(x)⇔f(-x)±f(x)=0⇔eq\f(f-x,fx)=±1(f(x)≠0).6.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.第4讲幂函数与二次函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质函数特征性质y=xy=x2y=x3y=xeq\f(1,2)y=x-1定义域RRR[0,+∞){x|x∈R,且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R,且y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减,[0,+∞)增增增(-∞,0)减,(0,+∞)减定点(0,0),(1,1)(1,1)2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0的两实根.(3)二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0定义域RR值域y∈eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞))y∈eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)))对称轴x=-eq\f(b,2a)顶点坐标eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),\f(4ac-b2,4a)))奇偶性b=0⇔y=ax2+bx+c(a≠0)是偶函数递增区间eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(b,2a)))递减区间eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(b,2a)))eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))最值当x=-eq\f(b,2a)时,y有最小值ymin=eq\f(4ac-b2,4a)当x=-eq\f(b,2a)时,y有最大值ymax=eq\f(4ac-b2,4a)第5讲指数与指数函数1.根式(1)根式的概念根式的概念符号表示备注如果xn=a,则x叫做a的n次方根n>1且n∈N*当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数eq\r(n,a)零的n次方根是零当n为偶数时,正数的n次方根有两个,它们互为相反数±eq\r(n,a)负数没有偶次方根(2)两个重要公式①eq\r(n,an)=eq\b\lc\{\rc\(\a\vs4\al\co1(a,n为奇数,,|a|=\b\lc\{\rc\(\a\vs4\al\co1(a,a≥0,,-a,a<0,))))n为偶数.②(eq\r(n,a))n=a.2.有理数指数幂(1)幂的有关概念①零指数幂:a0=1(a≠0).②负整数指数幂:a-p=eq\f(1,ap)(a≠0,p∈N*);③正分数指数幂:aeq\f(m,n)=eq\r(n,am)(a>0,m,n∈N*,且n>1);④负分数指数幂:a-eq\f(m,n)==eq\f(1,\r(n,am))(a>0,m,n∈N*,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①aras=ar+s(a>0,r,s∈Q);②(ar)s=ars(a>0,r,s∈Q);③(ab)r=arbr(a>0,b>0,r∈Q).3.指数函数的图象与性质y=axa>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数第6讲对数与对数函数1.对数的概念如果ax=N(a>0,且a≠1),则数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的性质几个恒等式(M,N,a,b都是正数,且a,b≠1)①=N;②logaaN=N;③logbN=eq\f(logaN,logab);④=eq\f(n,m)logab;⑤logab=eq\f(1,logba),推广logab·logbc·logcd=logad.(2)对数的运算法则(a>0,且a≠1,M>0,N>0)①loga(M·N)=logaM+logaN;②logaeq\f(M,N)=logaM-logaN;③logaMn=nlogaM(n∈R);④logaeq\r(n,M)=eq\f(1,n)logaM.3.对数函数的图象与性质a>10<a<1图象性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即x=1时,y=0(4)当x>1时,y>0当0<x<1时,y<0(5)当x>1时,y<0当0<x<1时,y>0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数第7讲函数的图象1.函数的图象及作法2.图象变换(1)平移变换(2)对称变换①y=f(x)eq\o(→,\s\up14(关于x轴对称))y=-f(x);②y=f(x)eq\o(→,\s\up14(关于y轴对称))y=f(-x);③y=f(x)eq\o(→,\s\up14(关于原点对称))y=-f(-x);④y=ax(a>0且a≠1)eq\o(→,\s\up14(关于y=x对称))y=logax(a>0且a≠1).(3)翻折变换①y=f(x)eq\o(→,\s\up14(保留x轴上方图象),\s\do13(将x轴下方图象翻折上去))y=|f(x)|.②y=f(x)eq\o(→,\s\up14(保留y轴右边图象,并作其),\s\do13(关于y轴对称的图象))y=f(|x|).(4)伸缩变换①y=f(x)eq\o(→,\s\up14(纵坐标伸长a>1或缩短0<a<1为原来),\s\do13(的a倍,横坐标不变))y=af(x)(a>0)②y=f(x)eq\o(→,\s\up14(横坐标伸长0<a<1或缩短a>1为原来),\s\do13(的\f(1,a)倍,纵坐标不变))y=f(ax)(a>0)注“f(x+1)=f(x-1)”与“f(x+1)=f(1-x)”的区别,前者告诉周期为2,后者告诉图象关于直线x=1对称,第8讲函数与方程1.函数的零点(1)函数的零点的概念对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数的零点与方程的根的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理如果函数y=f(x)满足:①在闭区间[a,b]上连续;②f(a)·f(b)<0;则函数y=f(x)在(a,b)上存在零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.第9讲函数的应用1.函数模型及其性质比较(1)几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)与指数函数相关模型f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)与对数函数相关模型f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)与幂函数相关模型f(x)=axn+b(a,b,n为常数,a≠0,n≠0)(2)三种函数模型性质比较函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的单调性单调增函数单调增函数单调增函数增长速度越来越快越来越慢相对平稳2.“f(x)=x+eq\f(a,x)”型函数模型形如f(x)=x+eq\f(a,x)(a>0)的函数模型称为“对勾”函数模型,在现实生活中有着广泛的应用,常利用基本不等式、导数、函数单调性求解最值.第10讲变化率与导数、导数的计算1.导数的概念(1)函数y=f(x)在x=x0处的导数①定义:称函数y=f(x)在x=x0处的瞬时变化率eq\f(Δy,Δx)=eq\f(fx0+Δx-fx0,Δx)为函数y=f(x)在x=x0处的导数,记作f′(x0)或.②几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).(2)称函数f′(x)=eq\f(fx+Δx-fx,Δx)为f(x)的导函数.2.基本初等函数的导数公式原函数导函数f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sinxf′(x)=cos_xf(x)=cosxf′(x)=-sin_xf(x)=axf′(x)=axln_a(a>0)f(x)=exf′(x)=exf(x)=logaxf′(x)=eq\f(1,xlna)f(x)=lnxf′(x)=eq\f(1,x)3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(fx,gx)))′=eq\f(f′xgx-fxg′x,[gx]2)(g(x)≠0).4.复合函数的导数设u=v(x)在点x处可导,y=f(u)在点u处可导,则复合函数f[v(x)]在点x处可导,且f′(x)=f′(u)·v′(x).规律方法(1)导数f′(x0)的几何意义就是函数y=f(x)在点P(x0,y0)处的切线的斜率.第(1)题要能从“切线平行于x轴”提炼出切线的斜率为0,进而构建方程,这是求解的关键,考查了分析问题和解决问题的能力.(2)在求切线方程时,应先判断已知点Q(a,b)是否为切点,若已知点Q(a,b)不是切点,则应求出切点的坐标,利用切点坐标求出切线斜率,进而用切点坐标表示出切线方程.第11讲导数在研究函数中的应用1.函数的导数与单调性的关系函数y=f(x)在某个区间内可导,则(1)若f′(x)>0,则f(x)在这个区间内单调递增.(2)若f′(x)<0,则f(x)在这个区间内单调递减.(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数极大值函数y=f(x)在点x0处连续且f′(x0)=0,若在点x0附近左侧f′(x)>0,右侧f′(x)<0,则x0为函数的极大值点,f(x0)叫函数的极大值极小值函数y=f(x)在点x0处连续且f′(x0)=0,若在点x0附近左侧f′(x)<0,右侧f′(x)>0,则x0为函数的极小值点,f(x0)叫函数的极小值3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,则它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值.②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.第三篇三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类eq\b\lc\{\rc\(\a\vs4\al\co1(按旋转方向不同分为正角、负角、零角.,按终边位置不同分为象限角和轴线角.))(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad.(2)公式:角α的弧度数公式|α|=eq\f(l,r)(弧长用l表示)角度与弧度的换算①1°=eq\f(π,180)rad②1rad=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180,π)))°弧长公式弧长l=|α|r扇形面积公式S=eq\f(1,2)lr=eq\f(1,2)|α|r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),则y叫做α的正弦,记作sinαx叫做α的余弦,记作cosαeq\f(y,x)叫做α的正切,记作tanα各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-口诀Ⅰ全正,Ⅱ正弦,Ⅲ正切,Ⅳ余弦三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线[感悟·提升]1.一个区别“小于90°的角”、“锐角”、“第一象限的角”的区别如下:小于90°的角的范围:eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(π,2))),锐角的范围:eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),第一象限角的范围:eq\b\lc\(\rc\)(\a\vs4\al\co1(2kπ,2kπ+\f(π,2)))(k∈Z).所以说小于90°的角不一定是锐角,锐角是第一象限角,反之不成立.如(1)、(2).2.三个防范一是注意角的正负,特别是表的指针所成的角,如(3);二是防止角度制与弧度制在同一式子中出现;三是如果角α的终边落在直线上时,所求三角函数值有可能有两解.第2讲同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:eq\f(sinα,cosα)=tanα.2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-αeq\f(π,2)-αeq\f(π,2)+α正弦sinα-sinα-sinαsinαcosαcosα余弦cosα-cosαcosα-cosαsinα-sinα正切tanαtanα-tanα-tanα口诀函数名不变,符号看象限函数名改变,符号看象限3.特殊角的三角函数值角α0°30°45°60°90°120°150°180°角α的弧度数0eq\f(π,6)eq\f(π,4)eq\f(π,3)eq\f(π,2)eq\f(2π,3)eq\f(5π,6)πsinα0eq\f(1,2)eq\f(\r(2),2)eq\f(\r(3),2)1eq\f(\r(3),2)eq\f(1,2)0cosα1eq\f(\r(3),2)eq\f(\r(2),2)eq\f(1,2)0-eq\f(1,2)-eq\f(\r(3),2)-1tanα0eq\f(\r(3),3)1eq\r(3)-eq\r(3)-eq\f(\r(3),3)0第3讲三角函数的图象与性质正弦、余弦、正切函数的图象与性质(下表中k∈Z).函数y=sinxy=cosxy=tanx图象定义域RReq\b\lc\{\rc\(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x∈R,且x≠))))eq\b\lc\\rc\}(\a\vs4\al\co1(kπ+\f(π,2),k∈Z))值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数递增区间eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ-\f(π,2),2kπ+\f(π,2)))[2kπ-π,2kπ]eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ-\f(π,2),kπ+\f(π,2)))递减区间eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ+\f(π,2),2kπ+\f(3π,2)))[2kπ,2kπ+π]无对称中心(kπ,0)eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ+\f(π,2),0))eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,2),0))对称轴x=kπ+eq\f(π,2)x=kπ无[感悟·提升]1.一点提醒求函数y=Asin(ωx+φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx+φ看作一个整体,代入y=sint的相应单调区间求解.2.三个防范一是函数y=sinx与y=cosx的对称轴分别是经过其图象的最高点或最低点且平行于y轴的直线,如y=cosx的对称轴为x=kπ,而不是x=2kπ(k∈Z).二是对于y=tanx不能认为其在定义域上为增函数,应在每个区间eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ-\f(π,2),kπ+\f(π,2)))(k∈Z)内为增函数.三是函数y=sinx与y=cosx的最大值为1,最小值为-1,不存在一个值使sinx=eq\f(3,2).第4讲函数y=Asin(ωx+φ)的图象及应用1.“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个交点,作图时的一般步骤为:(1)定点:如下表所示.x-eq\f(φ,ω)eq\f(\f(π,2)-φ,ω)eq\f(π-φ,ω)eq\f(\f(3π,2)-φ,ω)eq\f(2π-φ,ω)ωx+φ0eq\f(π,2)πeq\f(3π,2)2πy=Asin(ωx+φ)0A0-A0(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=Asin(ωx+φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=Asin(ωx+φ)在R上的图象.2.函数y=sinx的图象经变换得到y=Asin(ωx+φ)的图象的两种途径3.函数y=Asin(ωx+φ)的物理意义当函数y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动时,A叫做振幅,T=eq\f(2π,ω)叫做周期,f=eq\f(1,T)叫做频率,ωx+φ叫做相位,φ叫做初相.第5讲两角和与差的正弦、余弦和正切1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin_αcos_β±cos_αsin_β.cos(α∓β)=cos_αcos_β±sin_αsin_β.tan(α±β)=eq\f(tanα±tanβ,1∓tanαtanβ).2.二倍角的正弦、余弦、正切公式sin2α=2sin_αcos_α.cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.tan2α=eq\f(2tanα,1-tan2α).3.有关公式的逆用、变形等(1)tanα±tanβ=tan(α±β)(1∓tan_αtan_β).(2)cos2α=eq\f(1+cos2α,2),sin2α=eq\f(1-cos2α,2).(3)1+sin2α=(sinα+cosα)2,1-sin2α=(sinα-cosα)2,sinα±cosα=eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(α±\f(π,4))).4.函数f(α)=asinα+bcosα(a,b为常数),可以化为f(α)=eq\r(a2+b2)sin(α+φ),其中tanφ=eq\f(b,a).第6讲正弦定理和余弦定理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则正弦定理余弦定理内容eq\f(a,sinA)=eq\f(b,sinB)=eq\f(c,sinC)=2R(R为△ABC外接圆半径)a2=b2+c2-2bccosAb2=a2+c2-2accosBc2=a2+b2-2abcosC常见变形(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA=eq\f(a,2R),sinB=eq\f(b,2R),sinC=eq\f(c,2R);(3)a∶b∶c=sinA∶sinB∶sinCcosA=eq\f(b2+c2-a2,2bc);cosB=eq\f(a2+c2-b2,2ac);cosC=eq\f(a2+b2-c2,2ab)解决的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角2.在△ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式a=bsinAbsinA<a<ba≥ba>b解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=eq\f(1,2)ah(h表示边a上的高).(2)S=eq\f(1,2)bcsinA=eq\f(1,2)absinC=eq\f(1,2)acsinB.(3)S=eq\f(1,2)r(a+b+c)(r为△ABC内切圆半径).第7讲解三角形应用举例1.距离的测量背景可测元素图形目标及解法两点均可到达a,b,α求AB:AB=eq\r(a2+b2-2abcosα)只有一点可到达b,α,β求AB:(1)α+β+B=π;(2)eq\f(AB,sinβ)=eq\f(b,sinB)两点都不可到达α,β,γ,θ求AB:(1)△ACD中,用正弦定理求AC;(2)△BCD中,用正弦定理求BC;(3)△ABC中,用余弦定理求AB2.高度的测量背景可测元素图形目标及解法底部可到达a,α求AB:AB=atan_α底部不可到达a,α,β求AB:(1)在△ACD中用正弦定理求AD;(2)AB=ADsin_β3.实际问题中常见的角(1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.(4)坡度:坡面与水平面所成的二面角的度数.第四篇平面向量1.向量的有关概念名称定义备注平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算续表减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.第2讲平面向量基本定理及坐标表示1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,则对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq\r(x\o\al(2,1)+y\o\al(2,1)).(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则eq\o(AB,\s\up12(→))=(x2-x1,y2-y1),|eq\o(AB,\s\up12(→))|=eq\r(x2-x12+y2-y12).3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.[感悟·提升]1.向量坐标与点的坐标的区别在平面直角坐标系中,以原点为起点的向量eq\o(OA,\s\up12(→))=a,点A的位置被向量a唯一确定,此时点A的坐标与a的坐标统一为(x,y),但应注意其表示形式的区别,如点A(x,y),向量a=eq\o(OA,\s\up12(→))=(x,y).当平面向量eq\o(OA,\s\up12(→))平行移动到eq\o(O1A1,\s\up12(→))时,向量不变即eq\o(O1A1,\s\up12(→))=eq\o(OA,\s\up12(→))=(x,y),但eq\o(O1A1,\s\up12(→))的起点O1和终点A1的坐标都发生了变化.2.两个防范一是注意能作为基底的两个向量必须是不共线的,如(1).二是注意运用两个向量a,b共线坐标表示的充要条件应为x1y2-x2y1=0,如(5).第3讲平面向量的数量积1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cosθ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cosθ=x1x2+y1y2.(2)模:|a|=eq\r(a·a)=eq\r(x\o\al(2,1)+y\o\al(2,1)).(3)夹角:cosθ=eq\f(a·b,|a||b|)=eq\f(x1x2+y1y2,\r(x\o\al(2,1)+y\o\al(2,1))·\r(x\o\al(2,2)+y\o\al(2,2))).(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤eq\r(x\o\al(2,1)+y\o\al(2,1))·eq\r(x\o\al(2,2)+y\o\al(2,2)).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).[感悟·提升]三个防范一是两个向量的数量积是一个数量,而不是向量,如(1);二是在向量数量积的几何意义中,投影是一个数量,不是向量.设向量a,b的夹角为θ,当θ为锐角时,投影为正值;当θ为钝角时,投影为负值;当θ为直角时,投影为0;当θ=0°时,b在a的方向上投影为|b|,当θ=180°时,b在a方向上投影为-|b|,如(2);当θ=0°时,a·b>0,θ=180°,a·b<0,即a·b>0是两个向量a,b夹角为锐角的必要而不充分条件,如(3);三是a·b=0不能推出a=0或b=0,因为a·b=0时,有可能a⊥b,如(4).第4讲平面向量应用举例1.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b(b≠0)⇔a=λb⇔x1y2-x2y1=0.(2)证明垂直问题,常用数量积的运算性质a⊥b⇔a·b=0⇔x1x2+y1y2=0(a,b均为非零向量).(3)求夹角问题,利用夹角公式cosθ=eq\f(a·b,|a||b|)=eq\f(x1x2+y1y2,\r(x\o\al(2,1)+y\o\al(2,1))\r(x\o\al(2,2)+y\o\al(2,2)))(θ为a与b的夹角).2.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.3.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.4.向量在物理中的应用物理学中的力、速度、位移都是矢量,它们的分解、合成与向量的加减法相似,因此可以用向量的知识来解决某些物理问题.规律方法向量在解析几何中的作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a⊥b⇔a·b=0;a∥b⇔a=λb(b≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法.第五篇数列第1讲数列的概念与简单表示法1.数列的概念(1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第1项,通常也叫做首项.(2)数列的通项公式如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,则这个公式叫做这个数列的通项公式.(3)数列的前n项和在数列{an}中,Sn=a1+a2+…+an叫做数列的前n项和.2.数列的表示方法(1)表示方法列表法列表格表达n与f(n)的对应关系图象法把点(n,f(n))画在平面直角坐标系中公式法通项公式把数列的通项使用通项公式表达的方法递推公式使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an,an-1)等表达数列的方法(2)数列的函数特征:上面数列的三种表示方法也是函数的表示方法,数列可以看作是定义域为正整数集(或它的有限子集{1,2,…,n}的函数an=f(n))当自变量由小到大依次取值时所对应的一列函数值.3.数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限单调性递增数列an+1>an其中n∈N*递减数列an+1<an常数列an+1=an摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列周期性∀n∈N*,存在正整数常数k,an+k=an4.an与Sn的关系若数列{an}的前n项和为Sn,则an=eq\b\lc\{\rc\(\a\vs4\al\co1(S1,n=1,,Sn-Sn-1,n≥2.))第2讲等差数列及其前n项和1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.数学语言表达式:an+1-an=d(n∈N*),d为常数.2.等差数列的通项公式与前n项和公式(1)若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.若等差数列{an}的第m项为am,则其第n项an可以表示为an=am+(n-m)d.(2)等差数列的前n项和公式Sn=eq\f(na1+an,2)=na1+eq\f(nn-1,2)d.(其中n∈N*,a1为首项,d为公差,an为第n项)3.等差数列及前n项和的性质(1)若a,A,b成等差数列,则A叫做a,b的等差中项,且A=eq\f(a+b,2).(2)若{an}为等差数列,当m+n=p+q,am+an=ap+aq(m,n,p,q∈N*).(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md(4)数列Sm,S2m-Sm,S3m-S2m(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=eq\f(nd,2);若n为奇数,则S奇-S偶=a中(中间项).4.等差数列与函数的关系(1)等差数列与一次函数的区别与联系等差数列一次函数解析式an=kn+b(n∈N*)f(x)=kx+b(k≠0)不同点定义域为N*,图象是一系列孤立的点(在直线上),k为公差定义域为R,图象是一条直线,k为斜率相同点数列的通项公式与函数解析式都是关于自变量的一次函数.①k≠0时,数列an=kn+b(n∈N*)图象所表示的点均匀分布在函数f(x)=kx+b(k≠0)的图象上;②k>0时,数列为递增数列,函数为增函数;③k<0时,数列为递减数列,函数为减函数(2)等差数列前n项和公式可变形为Sn=eq\f(d,2)n2+eq\b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))n,当d≠0时,它是关于n的二次函数,它的图象是抛物线y=eq\f(d,2)x2+eq\b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))x上横坐标为正整数的均匀分布的一群孤立的点.1.等差数列的判断方法(1)定义法:an+1-an=d(d是常数)⇔{an}是等差数列.(2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}是等差数列.(3)通项公式:an=pn+q(p,q为常数)⇔{an}是等差数列.(4)前n项和公式:Sn=An2+Bn(A、B为常数)⇔{an}是等差数列.3讲等比数列及其前n项和1.等比数列的有关概念(1)等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,则这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.数学语言表达式:eq\f(an,an-1)=q(n≥2),q为常数.(2)等比中项如果a,G,b成等比数列,则G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab.2.等比数列的通项公式及前n项和公式(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1;若等比数列{an}的第m项为am,公比是q,则其第n项an可以表示为an=amqn-m.(2)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn=eq\f(a11-qn,1-q)=eq\f(a1-anq,1-q).3.等比数列及前n项和的性质(1)若{an}为等比数列,且k+l=m+n(k,l,m,n∈N*),则ak·al=am·an.(2)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列,公比为qm(3)当q≠-1,或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn.(4)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an))),{aeq\o\al(2,n)},{an·bn},eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,bn)))仍是等比数列.辨析感悟1.对等比数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.(×)(2)三个数a,b,c成等比数列的充要条件是b2=ac.(×)(3)若三个数成等比数列,则这三个数可以设为eq\f(a,q),a,aq.(√)2.通项公式与前n项和的关系(4)数列{an}的通项公式是an=an,则其前n项和为Sn=eq\f(a1-an,1-a).(×)(5)(2013·新课标全国Ⅰ卷改编)设首项为1,公比为eq\f(2,3)的等比数列{an}的前n项和为Sn,则Sn=3-2an.(√)3.等比数列性质的活用(6)如果数列{an}为等比数列,则数列{lnan}是等差数列.(×)(7)在等比数列{an}中,已知a7·a12=5,则a8a9a10a11=(8)(2013·江西卷改编)等比数列x,3x+3,6x+6,…的第四项等于-2或0.(×)[感悟·提升]1.一个区别等差数列的首项和公差可以为零,且等差中项唯一;而等比数列首项和公比均不为零,等比中项可以有两个值.如(1)中的“常数”,应为“同一非零常数”;(2)中,若b2=ac,则不能推出a,b,c成等比数列,因为a,b,c为0时,不成立.2.两个防范一是在运用等比数列的前n项和公式时,必须注意对q=1或q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误,如(4).二是运用等比数列的性质时,注意条件的限制,如(6)中当eq\f(an+1,an)=q<0时,lnan+1-lnan=lnq无意义.1.等比数列的判定方法有以下几种:(1)定义:eq\f(an+1,an)=q(q是不为零的常数,n∈N*)⇔{an}是等比数列.(2)通项公式:an=cqn-1(c、q均是不为零的常数,n∈N*)⇔{an}是等比数列.(3)等比中项法:aeq\o\al(2,n+1)=an·an+2(an·an+1·an+2≠0,n∈N*)⇔{an}是等比数列.2.方程观点以及基本量(首项a1和公比q)思想仍然是求解等比数列问题的基本方法:在a1,q,n,an,Sn五个量中,知三求二.第4讲数列求和1.公式法(1)等差数列的前n项和公式:Sn=eq\f(na1+an,2)=na1+eq\f(nn-1,2)d.(2)等比数列的前n项和公式:Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1,q=1,,\f(a1-anq,1-q)=\f(a11-qn,1-q),q≠1.))2.数列求和的几种常用方法(1)分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,则这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,则求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项求和法在一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.例如,Sn=1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5050.3.常见的拆项公式(1)eq\f(1,nn+1)=eq\f(1,n)-eq\f(1,n+1);(2)eq\f(1,2n-12n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1)));(3)eq\f(1,\r(n)+\r(n+1))=eq\r(n+1)-eq\r(n).数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.第六篇不等式第1讲不等关系与不等式1.两个实数比较大小的方法(1)作差法eq\b\lc\{\rc\(\a\vs4\al\co1(a-b>0⇔a>b,,a-b=0⇔a=b,,a-b<0⇔a<b;))(2)作商法eq\b\lc\{\rc\(\a\vs4\al\co1(\f(a,b)>1⇔a>ba∈R,b>0,,\f(a,b)=1⇔a=ba∈R,b>0,,\f(a,b)<1⇔a<ba∈R,b>0.))2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇔a>c;(3)可加性:a>b⇔a+c>b+c,a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒an>bn(n∈N,n≥1);(6)可开方:a>b>0⇒eq\r(n,a)>eq\r(n,b)(n∈N,n≥2).[感悟·提升]两个防范一是在使用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件,如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘;“可乘性中的”c的符号等都需注意,如(2)、(3)、(4).二是利用特值法判断两个式子大小时,错误的关系式,只需取特值举反例即可,而正确的关系式,则需推理论证.如(6)中当a=1,b=-2时,eq\f(1,a)<eq\f(1,b)不成立;当a=-1,b=-2时,a2>b2不成立.第2讲一元二次不等式及其解法1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0).(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)利用二次函数的图象与x轴的交点确定一元二次不等式的解集.2.三个“二次”间的关系判别式Δ=b2-4Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-eq\f(b,2a)没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}eq\b\lc\{\rc\}(\a\vs4\al\co1(x|x≠-\f(b,2a)))Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅第3讲二元一次不等式(组)与简单的线性规划问题1.二元一次不等式(组)表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.(2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.线性规划的有关概念名称意义线性约束条件由x,y的一次不等式(或方程)组成的不等式组,是对x,y的约束条件目标函数关于x,y的解析式线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题第4讲基本不等式1.基本不等式:eq\r(ab)≤eq\f(a+b,2)(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b时取等号.(3)其中eq\f(a+b,2)称为正数a,b的算术平均数,eq\r(ab)称为正数a,b的几何平均数.2.几个重要的不等式(1)重要不等式:a2+b2≥2ab(a,b∈R).当且仅当a=b时取等号.(2)ab≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2(a,b∈R),当且仅当a=b时取等号.(3)eq\f(a2+b2,2)≥eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2(a,b∈R),当且仅当a=b时取等号.(4)eq\f(b,a)+eq\f(a,b)≥2(a,b同号),当且仅当a=b时取等号.3.利用基本不等式求最值已知x>0,y>0,则(1)如果积xy是定值p,则当且仅当x=y时,x+y有最小值是2eq\r(p)(简记:积定和最小).(2)如果和x+y是定值s,则当且仅当x=y时,xy有最大值是eq\f(s2,4)(简记:和定积最大).[感悟·提升]两个防范一是在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.对于公式a+b≥2eq\r(ab),ab≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2,要弄清它们的作用、使用条件及内在联系,两个公式也体现了ab和a+b的转化关系.如(2)、(4)、(6).二是在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.第七篇立体几何第1讲空间几何体的结构及其三视图和直观图1.多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆锥可以由直角三角形绕其任一直角边旋转得到.(2)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(3)球可以由半圆面或圆面绕直径旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.[感悟·提升]1.两点提醒一是从棱柱、棱锥、棱台、圆柱、圆锥、圆台的定义入手,借助几何模型强化空间几何体的结构特征.如(1)中例如;(2)中例如.二是图形中与x轴、y轴、z轴都不平行的线段可通过确定端点的办法来解,即过端点作坐标轴的平行线段,再借助所作的平行线段来确定端点在直观图中的位置.如(7).2.一个防范三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.如(8)中正方体与球各自的三视图相同,但圆锥的不同.第2讲空间几何体的表面积与体积1.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrhV=Sh=πr2h圆锥S侧=πrlV=eq\f(1,3)Sh=eq\f(1,3)πr2h=eq\f(1,3)πr2eq\r(l2-r2)圆台S侧=π(r1+r2)lV=eq\f(1,3)(S上+S下+eq\r(S上S下))h=eq\f(1,3)π(req\o\al(2,1)+req\o\al(2,2)+r1r2)h直棱柱S侧=ChV=Sh正棱锥S侧=eq\f(1,2)Ch′V=eq\f(1,3)Sh正棱台S侧=eq\f(1,2)(C+C′)h′V=eq\f(1,3)(S上+S下+eq\r(S上S下))h球S球面=4πR2V=eq\f(4,3)πR32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.第3讲空间点、直线、平面之间的位置关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,则这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,则它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)空间两直线的位置关系eq\b\lc\{\rc\(\a\vs4\al\co1(共面直线\b\lc\{\rc\(\a\vs4\al\co1(平行,相交)),异面直线:不同在任何一个平面内))(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(π,2))).(3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,则这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.律方法1.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(π,2))),当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.2.证明线共点问题,常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.3.证明点或线共面问题,一般有以下两种途径:(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;(2)将所有条件分为两部分,然后分别确定平面,再证平面重合.4.异面直线的判定方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.第4讲直线、平面平行的判定与性质1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥ba∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥ba∥α1.平行关系的转化方向如图所示:2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.第5讲直线、平面垂直的判定与性质1.直线与平面垂直(1)定义:若直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线线垂直⇒线面垂直).即:a⊂α,b⊂α,l⊥a,l⊥b,a∩b=P⇒l⊥α.(3)性质定理:垂直于同一个平面的两条直线平行.即:a⊥α,b⊥α⇒a∥b.2.平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.即:a⊂α,a⊥β⇒α⊥β.(3)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.即:α⊥β,a⊂α,α∩β=b,a⊥b⇒a⊥β.3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:θ∈eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2))).4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.1.转化思想:垂直关系的转化线线垂直eq\o(,\s\up12(判定),\s\do12(性质))线面垂直eq\o(,\s\up12(判定),\s\do12(性质))面面判定性质垂直2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直间的转化条件是解决这类问题的关键.第6讲空间向量及其运算1.空间向量在空间中,具有大小和方向的量叫做空间向量,其大小叫做向量的长度或模.2.空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=xa+yb.(3)空间向量基本定理:如果三个向量a,b,c不共面,则对空间任一向量p,存在一个唯一的有序实数组{x,y,z}使得p=xa+yb+zc.3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos<a,b>.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b).②交换律:a·b=b·a.③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·ba1b1+a2b2+a3b3共线a=λb(b≠0)a1=λb1,a2=λb2,a3=λb3垂直a·b=0(a≠0,b≠0)a1b1+a2b2+a3b3=0模|a|eq\r(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3))夹角<a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论