2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题【含答案】_第1页
2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题【含答案】_第2页
2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题【含答案】_第3页
2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题【含答案】_第4页
2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在边长为10的菱形ABCD中,P为CD上一点,BP⊥CD,连接AP,若DP=4,则AP的长为()A.241 B.234 C.142、(4分)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为()A.2 B.3 C. D.3、(4分)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2 B.3 C.4 D.54、(4分)如图,直线l1//l2//l3,直线AC分别交直线l1、l2、l3于点A、B、C,直线DF分別交直线l1,l2、l3于点A.ABBC=C.PAPB=5、(4分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+26、(4分)定义新运算“”如下:当时,;当时,,若,则的取值范围是()A.或 B.或C.或 D.或7、(4分)如图,中,,,则的度数为()A. B. C. D.8、(4分)如图,阴影部分为一个正方形,此正方形的面积是()\A.2 B.4 C.6 D.8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.10、(4分)频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.11、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.12、(4分)如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.13、(4分)过边形的一个顶点共有2条对角线,则该边形的内角和是__度.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.15、(8分)在“6.26”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?16、(8分)已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.17、(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60˚的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?18、(10分)如图,E为正方形ABCD内一点,点F在CD边上,且∠BEF=90°,EF=2BE.点G为EF的中点,点H为DG的中点,连接EH并延长到点P,使得PH=EH,连接DP.(1)依题意补全图形;(2)求证:DP=BE;(3)连接EC,CP,猜想线段EC和CP的数量关系并证明.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.20、(4分)如图,已知一次函数与一次函数的图像相交于点P(-2,1),则关于不等式x+b≥mx-n的解集为_____.21、(4分)如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=______.22、(4分)在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.23、(4分)将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,﹣1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′(,),C′(,);(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(,).25、(10分)2019年5月区教育局在全区中小学开展了“情系新疆书香援疆”捐书活动.某学校学生社团对部分学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:(1)统计表中的_____________,_____________,_____________,_____________;(2)科普图书在扇形统计图中的圆心角是_____________°;(3)若该校共捐书1500本,请估算“科普图书”和“小说”一共多少本.26、(12分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

在Rt△BCP中利用勾股定理求出PB,在Rt△ABP中利用勾股定理求出PA即可.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在Rt△PCB中,∵∠CPB=90°,PC=6,BC=10,∴PB=BC2在Rt△ABP中,∵∠ABP=90°,AB=10,PB=8,∴PA=AB2故选:A此题考查菱形的性质,勾股定理,解题关键在于求出PB.2、A【解析】

如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.【详解】解:如图,延长FD到G,使DG=BE,连接CG、EF∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)∴CG=CE,∠DCG=∠BCE∴∠GCF=45°在△GCF与△ECF中∵GC=EC,∠GCF=∠ECF,CF=CF∴△GCF≌△ECF(SAS)∴GF=EF∵CE=,CB=6∴BE===3∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x∴EF==∴∴x=4,即AF=4∴GF=5∴DF=2∴CF===故选A.本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.3、B【解析】

①通过证明全等判断,②④只能确定为等腰三角形,不能确定为等边三角形,据此判断正误,③通过判断,⑤作于点M通过直角三角形求出E、F坐标从而求得直线解析式.【详解】∵点E、F都在反比例函数的图像上,∴,即,∵四边形是正方形,∴,∴∴,∴,①正确;∵∴,∵k的值不能确定,∴的值不能确定,②错误;∴只能确定为等腰三角形,不能确定为等边三角形,∴,,∴,,④错误;∵,∴,∴,③正确;作于点M,如图∵,为等腰直角三角形,,设,则,在中,,即,解得,∴,在正方形中,,∴,即为等腰直角三角形,∴,设正方形的边长为,则,在中,,即,解得∴,∴∴设直线的解析式为,过点则有解得故直线的解析式为;⑤正确;故正确序号为①③⑤,选.本题考查了反比例函数与正方形的综合运用,解题的关键在于利用函数与正方形的相关知识逐一判断正误.4、C【解析】

根据平行线分线段成比例定理列出比例式,判断即可.【详解】解:∵l1∥l2∥l3,平行线分线段成比例,∴ABBC=DEPAPC=PDPAPB=PDPBPE=PCPF=故选择:C.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5、C【解析】

据一次函数图象与几何变换得到直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.【详解】直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.故选:C.本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.6、D【解析】

分3>x+2和3<x+2两种情况,根据新定义列出不等式求解可得.【详解】当3>x+2,即x<1时,3(x+2)+x+2>0,

解得:x>-2,

∴-2<x<1;

当3<x+2,即x>1时,3(x+2)-(x+2)>0,

解得:x>-2,

∴x>1,

综上,-2<x<1或x>1,

故选:D.考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.7、B【解析】

设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,

∴∠B+19°=x+14°,

∴∠B=x-5°,

∵AB=AC,

∴∠C=∠B=x-5°,

∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,

∵AD=DE,

∴∠DEA=∠DAE=x+9°,

在△ADE中,由三角形内角和定理可得

x+x+9°+x+9°=180°,

解得x=54°,即∠ADE=54°,

∴∠DAE=63°

故选:B.本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.8、D【解析】

根据等腰直角三角形的性质求出正方形的边长即可.【详解】解:如图,∵△ABC是等腰直角三角形,AC=4,∴AB=BC=2,∴正方形的面积=1.故选:D.本题考查等腰直角三角形的性质,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、(﹣5,4).【解析】

首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.【详解】由题知A(3,0),B(-2,0),D在y轴上,∴AB=3-(-2)=5,OA=3,BO=2,由菱形邻边相等可得AD=AB=5,在Rt△AOD中,由勾股定理得:OD==4,由菱形对边相等且平行得CD=BA=5,所以C(-5,4).故答案为(﹣5,4).本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.10、1【解析】

根据“频数:组距=2且组距为3”可得答案.【详解】根据题意知,该小组的频数为2×3=1.故答案为:1.本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.11、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.12、2【解析】

连接AC,∵四边形ABCD为菱形,∴AB=BC=4,A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=,故答案为:2.本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.13、1【解析】

n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条;多边形内角和定理:(n-2)•180(n≥3)且n为整数).【详解】解:过n边形的一个顶点共有2条对角线,则n=2+3=5,该n边形的内角和是(5-2)×180°=1°,故答案为:1.本题考查了多边形内角和,熟记多边形内角和定理:(n-2)•180(n≥3)且n为整数)是解题的关键.三、解答题(本大题共5个小题,共48分)14、证明见解析.【解析】

连接BD交AC于O,根据平行四边形性质得出,,根据平行线性质得出,根据AAS证≌,推出,根据平行四边形的判定推出即可.【详解】连接BD交AC于O,四边形ABCD是平行四边形,,,,,在和中,,≌,,,四边形BFDE是平行四边形.本题考查了平行四边形的性质和判定,平行线的性质,对顶角相等,全等三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.15、甲小区住户有175户,乙小区住户有50户【解析】

设乙小区住户为x户,则甲小区住户有:(3x+25)户,根据每户平均收到资料的数量相同,列出方程,解答即可.【详解】解:设乙小区住户为x户,根据题意得:,解得:,经检验是原方程的解,∴甲小区住户,所以,甲小区住户有175户,乙小区住户有50户.本题考查了分式方程的实际应用,解题的关键是找到题目中的关系,列出分式方程.16、(1)这个函数的解析式为:;(1)点C在函数图象上,理由见解析;(3),-2<y<-1.【解析】

(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值;(1)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于2时,即该点在函数图象上;(3)根据反比例函数图象的增减性解答问题.【详解】解:(1)∵反比例函数(k为常数,k≠0)的图象经过点A(1,3),∴把点A的坐标代入解析式,得,解得,k=2.∴这个函数的解析式为:.(1)∵反比例函数解析式,∴2=xy.分别把点B、C的坐标代入,得(-1)×2=-2≠2,则点B不在该函数图象上;3×1=2,则点C在函数图象上.(3)∵k>0,∴当x<0时,y随x的增大而减小.∵当x=-3时,y=-1,当x=-1时,y=-2,∴当-3<x<-1时,-2<y<-1.17、(1)A城受台风影响;(2)DA=200千米,AC=160千米【解析】试题分析:(1)由A点向BF作垂线,垂足为C,根据勾股定理求得AC的长,与200比较即可得结论;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.试题解析:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).18、(1)详见解析;(2)详见解析;(3)详见解析【解析】

(1)根据题意可以画出完整的图形;

(2)由EF=2BE,点G为EF的中点可知,要证明DP=BE,只要证明DP=EG即可,要证明DP=EG,只要证明ΔPDH≌ΔEGH即可,然后根据题目中的条件和全等三角形的判定即可证明结论成立;

(3)首先写出线段EC和CP的数量关系,然后利用全等三角形的判定和性质即可证明结论成立.【详解】解:(1)依题意补全图形如下:(2)∵点H为线段DG的中点,∴DH=GH.在ΔPDH和ΔEGH中,∵EH=PH,∠EHG=∠PHD,∴ΔPDH≌ΔEGH(SAS).∴DP=EG.∵G为EF的中点,∴EF=2EG.∵EF=2EB,∴BE=EG=DP.(3)猜想:EC=CP.由(2)可知ΔPDH≌ΔEGH.∴∠HEG=∠HPD.∴DP∥EF.∴∠PDC=∠DFE.又∵∠BEF=∠BCD=90°,∴∠EBC+∠EFC=180°.又∵∠DFE+∠EFC=180°,∴∠EBC=∠DFE=∠PDC.∵BC=DC,DP=BE,∴ΔEBC≌ΔPDC(SAS).∴EC=PC.故答案为(1)详见解析;(2)详见解析;(3)详见解析.本题考查全等三角形的判定与性质、直角三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,故答案为一、二、四.20、【解析】

观察函数图象得到,当时,一次函数y1=x+b的图象都在一次函数y2=mx-n的图象的上方,由此得到不等式x+b>mx-n的解集.【详解】解:不等式x+b≥mx-n的解集为.故答案为.本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.21、30°【解析】

根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE=∠ABC=60°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.【详解】∵四边形ABCD是菱形,

∴O为BD中点,∠DBE=∠ABC=60°.

∵DE⊥BC,

∴在Rt△BDE中,OE=BE=OD,

∴∠OEB=∠OBE=60°.

∴∠OED=90°-60°=30°.

故答案是:30°考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.22、1.【解析】

根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠BDC=∠DBC=34°.∠BCA=∠DCO=90°﹣34°=56°.∵EF垂直平分BC,∴∠ECF=∠DBC=34°.∴∠ECA=56°﹣34°=1°.故答案为1.本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.23、上1【解析】

根据“上加下减”的平移规律解答即可.【详解】解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,即y=3x,该函数图象经过原点.故答案为上,1.此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.二、解答题(本大题共3个小题,共30分)24、(1)画图见解析;B′(﹣6,2),C′(﹣4,﹣2);(2)(-2x,-2y)【解析】

(1)延长BO,CO,在延长线上分别截取OB′=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论