2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题【含答案】_第1页
2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题【含答案】_第2页
2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题【含答案】_第3页
2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题【含答案】_第4页
2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)反比例函数图象上有,两点,则与的大小关系是()A. B. C. D.不确定2、(4分)将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍 B.扩大9倍 C.不变 D.扩大3倍3、(4分)已知点在直线上,则关于的不等式的解集是()A. B. C. D.4、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°<<180°)至△A′B′C,使得点A′恰好落在AB边上,则等于().A.150° B.90°C.60° D.30°5、(4分)对于两组数据A,B,如果sA2>sB2,且,则()A.这两组数据的波动相同 B.数据B的波动小一些C.它们的平均水平不相同 D.数据A的波动小一些6、(4分)已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是(

)A.x<2

B.x>5

C.2<x<5

D.0<x<2或x>57、(4分)一个直角三角形的两边长分别为2和,则第三边的长为()A.1 B.2 C. D.38、(4分)如图,等腰梯形ABCD的对角线AC、BD相交于O,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将一副直角三角板按如图所示的方式放置,其中,把含角的三角板向右平移,使顶点B落在含角的三角板的斜边上,则的长度为______.10、(4分)如图所示的分式化简,对于所列的每一步运算,依据错误的是_______.(填序号)①:同分母分式的加法法则②:合并同类项法则③:乘法分配律④:等式的基本性质11、(4分)函数y=﹣的自变量x的取值范围是_____.12、(4分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)13、(4分)如图,点B是反比例函数在第二象限上的一点,且矩形OABC的面积为4,则k的值为_______________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.15、(8分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.16、(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?17、(10分)在中,,点为所在平面内一点,过点分别作交于点,交于点,交于点.若点在上(如图①),此时,可得结论:.请应用上述信息解决下列问题:当点分别在内(如图②),外(如图③)时,上述结论是否成立?若成立,请给予证明;若不成立,,,,与之间又有怎样的数量关系,请写出你的猜想,不需要证明.18、(10分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式___________20、(4分)计算:12-21、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A=度.22、(4分)将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.23、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.二、解答题(本大题共3个小题,共30分)24、(8分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.(1)当x≥200时,求y与x之间的函数关系式(2)若小刚家10月份上网180小时,则他家应付多少元上网费?(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?25、(10分)按指定的方法解下列一元二次方程:(1)(配方法)(2)(公式法)26、(12分)新能源汽车投放市场后,有效改善了城市空气质量。经过市场调查得知,某市去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆.(1)求今、明两年新能源汽车数量的平均增长率;(2)为鼓励市民购买新能源汽车,该市财政部门决定对今年增加的新能源汽车给予每辆0.8万元的政府性补贴.在(1)的条件下,求该市财政部门今年需要准备多少补贴资金?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据反比例函数解析式,判断出反比例函数的增减性,根据增减性判断与的大小即可.【详解】由反比例函数的k的值为负数,∴各象限内,y随x的增大而增大,∵−2>−3,∴>,故选B此题考查反比例函数图象上点的坐标特征,解题关键在于判断出反比例函数的增减性2、B【解析】

将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.【详解】解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3、C【解析】

一次函数与x轴的交点横坐标为−1,且函数值y随自变量x的增大而增大,根据一次函数的性质可判断出解集.【详解】解:点A(−1,0)在直线y=kx+b(k>0)上,∴当x=−1时,y=0,且函数值y随x的增大而增大;∴关于x的不等式kx+b>0的解集是x>−1.故选:C.本题考查了一次函数与一元一次不等式.由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.4、C【解析】

由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,∴∠A=90°−∠ABC=60°,∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,∴AC=A′C,∴△ACA′是等边三角形,∴α=∠ACA′=60°.故选C.本题考查了旋转的性质及等边三角形的性质,熟练掌握性质定理是解题的关键.5、B【解析】试题解析:方差越小,波动越小.数据B的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、D【解析】

根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.【详解】根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.故选D.本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.7、C【解析】

本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边2既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即2是斜边或直角边.【详解】当2和均为直角边时,第三边=;当2为斜边,为直角边,则第三边=,故第三边的长为或故选C.此题考查勾股定理,解题关键在于分类讨论第三条边的情况.8、C【解析】

由等腰梯形的性质可知,AB=CD,AC=BD,OA=OD,OB=OC,利用这些条件,就可以找图中的全等三角形了,有三对.【详解】∵四边形ABCD是等腰梯形,∴AB=CD,AC=BD,OA=OD,OB=OC,AD∥CB,∴△AOB≌△DOC,△ABD≌△ACD,△ABC≌△DCB.故选C.本题考查等腰梯形的性质,全等三角形的判定.解本题时应先观察图,尽可能多的先找出图中的全等三角形,然后根据已知条件进行证明.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据特殊角的锐角三角函数值,求出EC、EG的长即可.【详解】解:在直角△BCF中,∵∠F=45°,BC=1,∴CF=BC=1.又∵EF=8,则EC=2.在直角△ABC中,∵BC=1,∠A=30°,∴,则AE=,∠A=30°,∴.故答案为:.本题考查的是平移的性质,需要正确运用锐角三角函数和特殊角的三角函数值.10、④【解析】

根据分式的基本性质可知.【详解】解:根据的是分式的基本性质,而不是等式的性质,所以④错误,故答案为:④.本题考查了分式的基本性质,解题的关键是熟知分式的基本性质是分子分母同时乘以或除以一个不为零的整式,分式的值不变.11、x<2【解析】

令2-x>0,解这个不等式即可求出自变量x的取值范围.【详解】由题意得,2-x>0,∴x<2.故答案为:x<2.本题考查了常量与变量,根据实际问题的数量关系用解析式法表示实际问题中两变化的量之间的关系,常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.12、大于【解析】

分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.【详解】∵共有球:2+3+5=10个,∴P白球==,P红球==,∵>,∴摸出白球可能性大于摸出红球可能性.故答案为:大于本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.13、-1【解析】

根据矩形的面积求出xy=−1,即可得出答案.【详解】设B点的坐标为(x,y),∵矩形OABC的面积为1,∴−xy=1,∴xy=−1,∵B在上,∴k=xy=−1,故答案为:-1.本题考查了矩形的性质和反比例函数图象上点的坐标特征,能求出xy=−1和k=xy是解此题的关键.三、解答题(本大题共5个小题,共48分)14、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.【解析】

(1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.【详解】(1)∵∠ACB=90°,AC=8,BC=1,∴AB=,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即:8×1=10×CD,∴CD=;(2)在Rt△ADC中,AD=,BD=AB-AD=10-=,当点N在线段CD上时,如图1所示:∵矩形PQMN,PQ总保持与AC垂直,∴PN∥AC,∴∠NPD=∠CAD,∵∠PDN=∠ADC,∴△PDN∽△ADC,∴,即:,解得:PD=,∴t=AD-PD=,当点Q在线段CD上时,如图2所示:∵PQ总保持与AC垂直,∴PQ∥BC,△DPQ∽△DBC,∴,即:,解得:DP=,∴t=AD+DP=,∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;(3)当Q在AC上时,如图3所示:∵PQ总保持与AC垂直,∴PQ∥BC,△APQ∽△ABC,∴,即:,解得:AP=,当0<t<时,重叠部分是矩形PHYN,如图4所示:∵PQ∥BC,∴△APH∽△ABC,∴,即:,∴PH=,∴S=PH•PN=;当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.当<t≤时,如图5中重叠部分是五边形PQMJI,S=S矩形PNMQ-S△JIN=2-•(t-)[1-(-t)•]=-t2+t-.【点评】本题属于四边形综合题,考查了解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.15、(1)△ABC是直角三角形(2)5【解析】

(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;

(2)根据三角形的周长和面积公式解答即可.【详解】(1)△ABC是直角三角形,由勾股定理可得:ACBCAB∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)△ABC的周长为:AC+BC+AB=5+2△ABC的面积为:12本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.16、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】

(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有480x+10解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.17、当点在内时,成立,证明见解析;当点在外时,不成立,数量关系为.【解析】

当点在内时(如图②),通过FD∥AB与AB=AC可知,FD=FC.即PD+PF=FC.要想FC+PE=AB,根据等量代换,只需要知道PE=AF,PE=AF可通过证明四边形AEPF是平行四边形,用对边相等得到;当点在外时(如图③),类似于①可知FD=FC;同样可通过证明四边形AEPF是平行四边形,得到对边PE=AF,此时FD=PF-PD,所以数量关系上类似于①但不同于①,只是FD=PF-PD的区别.【详解】解:当点在内时,上述结论成立.证明:∵,,∴四边形为平行四边形,∴,∵,∴,又∵,∴,∴,∴,∴,即,又∵,,∴;当点在外时,上述结论不成立,此时数量关系为.证明:∵,,∴四边形为平行四边形,∴,∵,∴,又∵,∴,∴,∴,∴,即,又∵,,∴.本题解题关键:运用平行四边形的判定和性质,等腰三角形的性质,结合多次等量代换,综合推理证明,特别注意的是点P在不同位置时,图形中线段的关系变化情况.18、证明见解析【解析】

证明:连接BD,交AC于点O,根据四边形ABCD是平行四边形,得到OA=OC,OB=OD,由此推出OE=OF,利用对角线互相平分的四边形是平行四边形即可得到结论.【详解】连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∵OE=OF,OB=OD∴四边形DEBF是平行四边形.此题考查平行四边形的性质及判定,熟记判定定理及性质定理是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20、3【解析】1221、60【解析】试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.考点:线段垂直平分线的性质22、【解析】

二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.【详解】将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,故答案为.23、1【解析】

因为关于的一元二次方程有两个相等的实数根,故,代入求解即可.【详解】根据题意可得:解得:m=1故答案为:1本题考查的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论