




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02勾股定理的经典实际应用(五大题型)重难点题型归纳【题型1梯子滑落问题】【题型2树枝旗子折断问题】【题型3航海是否有影响问题】【题型4风吹荷花问题】【题型5垂美四边形问题】(1)构造直角三角形解决问题;(2)垂美四边形【定义】对角线互相垂直的四边形叫做垂美四边形.【结论】如图,四边形ABCD的对角线AC⊥BD,则①AB²+CD²=AD²+BC².②S四ABCD=AC·BD【题型1梯子滑落问题】【典例1】(2023春•随县期末)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?【变式1-1】(2023春•郧阳区期末)如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点0.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.【变式1-3】(2022秋•雁塔区校级期中)如图,一架13米长的梯子AB斜靠在墙上,刚好梯顶A与地面的距离AO为12米.如果梯子底部水平滑动的距离BB′为3米,求梯顶下滑的距离AA′为多少米?【变式1-4】(2023春•淮南期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米【变式1-5】(2023春•庐阳区校级期中)如图,梯子AB斜靠在一竖直的墙AO上,这时BO为7m.如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移8m,则梯子AB的长为()A.24 B.25 C.15 D.20【变式1-6】(2022秋•黔江区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5m,则小巷的宽为()A.2.4m B.2m C.2.5m D.2.7m【题型2树枝旗子折断问题】【典例2-1】(2023春•鹤山市校级期中)在一棵树的10米高的B处有两只猴子.一只猴子爬下树走到离树20米的池塘的A处.另一只爬到树顶D后直接跃到A处.距离以直线计算.如果两只猴子所经过的距离相等.则这棵树高多少米?【典例2-2】(2023春•南宁期中)如图1,同学们想测量旗杆的高度.他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1.5米,如图1;②把绳子拉直,绳子末端在地面上离旗杆底部6米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点D处.(1)请你按小明的方案求出旗杆的高度;(2)已知小亮举起绳结离旗杆6.75米远,此时绳结离地面多高?【变式2-1】(2023春•东港区校级期中)由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.【变式2-2】(2021秋•临渭区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【变式2-3】(2022秋•常州期末)数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端A的绳子沿旗杆垂到地面时,测得多出部分BC的长为2m(如图1),再将绳子拉直(如图2),测得绳子末端的位置D到旗杆底部B的距离为6m,求旗杆AB的长.【变式2-4】(2022秋•城关区期末)如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?【题型3航海是否有影响问题】【典例3-1】(2023春•黄冈期中)如图所示,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【典例3-2】(2023春•邢台期中)如图,经过A村和B村(将A,B村看成直线l上的点)的笔直公路1旁有一块山地正在开发,现需要在C处进行爆破.已知C处与A村的距离为900米,C处与B村的距离为1200米,且AC⊥BC.(1)求A,B两村之间的距离;(2)为了安全起见,爆破点C周围半径750米范围内不得进入,在进行爆破时,公路AB段是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.【变式3-1】(2023春•千山区期中)如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C处将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西23°.(1)求甲巡逻艇的航行方向;(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?【变式3-2】(2023•灞桥区校级模拟)如图,海中有一小岛P,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M处测得小岛P在北偏东60°方向上,航行16海里到N处,这时测得小岛P在北偏东30°方向上.如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由.【变式3-3】(2022春•天元区期中)某岛C周围4海里内有暗礁,一轮船沿正东方向航行,在A处测得该岛在东偏南15°处,继续航行10海里到达B处,又测得该岛位于东偏南30°处,若该船不改变航向,有无触礁危险?【变式3-4】(2021•黄州区校级自主招生)南海诸岛自古以来都是中国的领土,4月12日,中央军委在南海海域隆重举行海上阅兵,军委主席习近平登上长沙舰检阅海军舰艇编队,包括辽宁号航母在内的48艘舰艇参加了阅兵仪式.如图,A、B是两处海港,其中A在B东偏南30〫方向千米处,辽宁号航母从海港A出发,沿东偏北45〫方向,以15千米/小时的速度匀速航行,两小时后,长沙舰从海港B出发,沿东偏北15〫的方向匀速航行,两舰恰好同时到达阅兵地点C.(1)长沙舰从海港出发航行到达阅兵地点用了多少时间?(2)求长沙舰的航行速度.(结果保留根号)【变式3-5】(2023春•青阳县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【变式3-6】(2022春•大方县期中)如图第4号台风“黑格比”的中心于2020年8月5日下午位于浙江省绍兴市境内的B处,最大风力有9级(23m/s),中心最低气压为990百帕,台风中心沿大约东北(BC)方向以25km/h的速度向D移动在距离B地250km的正北方有一A地,已知A地到BC的距离AD=70km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心70km的圆形区域内都将有受到台风破坏的危险,正在D点休闲的游人在接到台风警报后的几个小时内撤离才可脱离危险?【题型4风吹荷花问题】【典例4】(2022秋•南关区校级期末)如图,水池中离岸边D点4米的C处,直立长着一根芦苇,出水部分BC的长是2米,把芦苇拉到岸边,它的顶端B恰好落到D点,则水池的深度AC为多少米.【变式4-1】(2022秋•朝阳区期末)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm【变式4-2】(2022秋•兴平市期末)在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.【变式4-3】(2023春•新化县期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.【题型5垂美四边形问题】【典例5】(2022春•颍上县校级期末)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.【变式5-1】(2023•泸县校级三模)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=5,BC=12,则AB2+CD2=.【变式5-2】(2022秋•卧龙区校级期末)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.【变式5-3】(2022秋•达川区校级月考)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=,BC=3,则AB2+CD2=23.
专题02勾股定理的经典实际应用(五大题型)重难点题型归纳【题型1梯子滑落问题】【题型2树枝旗子折断问题】【题型3航海是否有影响问题】【题型4风吹荷花问题】【题型5垂美四边形问题】(1)构造直角三角形解决问题;(2)垂美四边形【定义】对角线互相垂直的四边形叫做垂美四边形.【结论】如图,四边形ABCD的对角线AC⊥BD,则①AB²+CD²=AD²+BC².②S四ABCD=AC·BD【题型1梯子滑落问题】【典例1】(2023春•随县期末)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?【答案】见试题解答内容【解答】解:(1)∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE===15,∴DB=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.【变式1-1】(2023春•郧阳区期末)如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点0.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.【答案】梯子底端E向后滑动的距离BE的长为0.8m.【解答】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC===2.4(m),∴CF=DC﹣DF=2.4﹣0.4=2(m)在Rt△BCF中,由勾股定理得:BC===1.5(m),∴BE=BC﹣CE=1.5﹣0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.【变式1-3】(2022秋•雁塔区校级期中)如图,一架13米长的梯子AB斜靠在墙上,刚好梯顶A与地面的距离AO为12米.如果梯子底部水平滑动的距离BB′为3米,求梯顶下滑的距离AA′为多少米?【答案】梯顶下滑的距离AA′为(12﹣)米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB===5(米),根据题意,得:OB′=5+3=8(米),又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′==(米).则AA′=(12﹣)米,答:梯顶下滑的距离AA′为(12﹣)米.【变式1-4】(2023春•淮南期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米【答案】C【解答】解:如图,∠ACB=∠ACB=90°,CB=0.7m,AC=2.5m,DE=2m.在Rt△ABC中,AB===2.5(m).∵AB=BE,∴BE=2.5(m),∴BD===1.5(m),∴CD=CB+BD=0.7+1.5=2.2(m),即小巷的宽度为2.2米.故选:C.【变式1-5】(2023春•庐阳区校级期中)如图,梯子AB斜靠在一竖直的墙AO上,这时BO为7m.如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移8m,则梯子AB的长为()A.24 B.25 C.15 D.20【答案】B【解答】解:设AO=xm,依题意,得AC=4,BD=8,在Rt△AOB中,根据勾股定理AB2=AO2+OB2=x2+72在Rt△COD中,根据勾股定理CD2=CO2+OD2=(x﹣4)2+(7+8)2,x2+72=(x﹣4)2+(7+8)2,解得x=24,∴,故选:B.【变式1-6】(2022秋•黔江区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5m,则小巷的宽为()A.2.4m B.2m C.2.5m D.2.7m【答案】D【解答】解:在Rt△ABC中,由勾股定理得:AB===2.5(m),∴A′B=AB=2.5米,在Rt△A′BD中,由勾股定理得:BD===2(m),∴CD=BC+BD=2+0.7=2.7(m),即小巷的宽为2.7米,故选:D.【题型2树枝旗子折断问题】【典例2-1】(2023春•鹤山市校级期中)在一棵树的10米高的B处有两只猴子.一只猴子爬下树走到离树20米的池塘的A处.另一只爬到树顶D后直接跃到A处.距离以直线计算.如果两只猴子所经过的距离相等.则这棵树高多少米?【答案】见试题解答内容【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m【典例2-2】(2023春•南宁期中)如图1,同学们想测量旗杆的高度.他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1.5米,如图1;②把绳子拉直,绳子末端在地面上离旗杆底部6米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点D处.(1)请你按小明的方案求出旗杆的高度;(2)已知小亮举起绳结离旗杆6.75米远,此时绳结离地面多高?【答案】(1)11.25米;(2)2.25米.【解答】解:(1)如图2,设旗杆的长度为x米,则绳子的长度为(x+1.5)米,在Rt△ABC中,由勾股定理得:x2+62=(x+1.5)2,解得:x=11.25,故旗杆的高度为11.25米;(2)由题可知,BD=BC=11.25米,DE=6.75米.在Rt△BDE中,由勾股定理得:BE2+6.752=11.252,解得:BE=9,∴EC=BC﹣BE=11.25﹣9=2.25(米),∴DF=EC=2.25米.故绳结离地面2.25米高.【变式2-1】(2023春•东港区校级期中)由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.【答案】见试题解答内容【解答】解:如图所示:延长AB,过点C作CD⊥AB延长线于点D,由题意可得:BC=13m,DC=12m,故BD==5(m),即AD=9m,则AC===15(m),故AC+AB=15+4=19(m).答:这棵树原来的高度是19米.【变式2-2】(2021秋•临渭区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【答案】见试题解答内容【解答】解:设AB=x,则AC=x+1,由图可得,∠ABC=90°,BC=5,∴Rt△ABC中,AB2+BC2=AC2,即x2+52=(x+1)2,解得x=12,答:风筝距离地面的高度AB为12米.【变式2-3】(2022秋•常州期末)数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端A的绳子沿旗杆垂到地面时,测得多出部分BC的长为2m(如图1),再将绳子拉直(如图2),测得绳子末端的位置D到旗杆底部B的距离为6m,求旗杆AB的长.【答案】8m.【解答】解:设旗杆AB的长为xm.根据题意,得∠ABD=90°,BD=6m,AD=(x+2)m.在Rt△ABD中,∠ABD=90°,∴AB2+BD2=AD2.∴x2+62=(x+2)2.解方程,得x=8.答:旗杆AB的长为8m.【变式2-4】(2022秋•城关区期末)如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?【答案】见试题解答内容【解答】解:设旗杆高为xm,那么绳长为(x+0.8)m,由勾股定理得x2+42=(x+0.8)2,解得x=9.6.答:旗杆的高度为9.6m.【题型3航海是否有影响问题】【典例3-1】(2023春•黄冈期中)如图所示,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案】见试题解答内容【解答】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里),∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.【典例3-2】(2023春•邢台期中)如图,经过A村和B村(将A,B村看成直线l上的点)的笔直公路1旁有一块山地正在开发,现需要在C处进行爆破.已知C处与A村的距离为900米,C处与B村的距离为1200米,且AC⊥BC.(1)求A,B两村之间的距离;(2)为了安全起见,爆破点C周围半径750米范围内不得进入,在进行爆破时,公路AB段是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.【答案】(1)A,B两村之间的距离为1500米;(2)AB段公路需要封锁,需要封锁的路段长度为420米.【解答】解:(1)在Rt△ABC中,AC=900米,BC=1200米,∴AB===1500(米).答:A,B两村之间的距离为1500米;(2)公路AB有危险而需要封锁.理由如下:如图,过C作CD⊥AB于D.以点C为圆心,750米为半径画弧,交AB于点E,F,连接CE,CF,∵S△ABC=AB•CD=BC•AC,∴CD===720(米).由于720米<750米,故有危险,因此AB段公路需要封锁.∴EC=FC=750米,∴ED==210(米),故EF=420米,则需要封锁的路段长度为420米.【变式3-1】(2023春•千山区期中)如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C处将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西23°.(1)求甲巡逻艇的航行方向;(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?【答案】见试题解答内容【解答】解:(1)由题意得:∠CBA=90°﹣23°=67°,AC=120×=12(海里),BC=50×=5(海里),∵AB=13(海里),∵AC2+BC2=AB2,∴△ABC是直角三角形,∵∠CBA=67°,∴∠CAB=23°,∴甲的航向为北偏东67°;(2)甲巡逻船航行3分钟的路程为:120×=6(海里),乙巡逻船航行3分钟的路程为:50×=2.5(海里),3分钟后,甲乙两巡逻船相距为:=6.5(海里).【变式3-2】(2023•灞桥区校级模拟)如图,海中有一小岛P,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M处测得小岛P在北偏东60°方向上,航行16海里到N处,这时测得小岛P在北偏东30°方向上.如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由.【答案】渔船不改变航线继续向东航行,不会有触礁危险,理由见解析.【解答】解:渔船不改变航线继续向东航行,不会有触礁危险,理由如下:过点P作PA⊥MN,交MN的延长线于点A,由题意得:∠PMA=90°﹣60°=30°,∠PNA=90°﹣30°=60°,∴∠APN=90°﹣∠PNA=30°,设AN=x海里,则PN=2x海里,∴AP===x(海里),AM=MN+AN=(16+x)海里,∵∠PMA=30°,∴PM=2AP=2x(海里),在Rt△MAP中,PM2=AP2+AM2,即(2x)2=(x)2+(x+16)2,解得:x1=8,x2=﹣4(不合题意,舍去);∴AP=x=8(海里),∵(8)2=192,122=144,∴8>12,∴渔船不改变航线继续向东航行,不会有触礁危险.【变式3-3】(2022春•天元区期中)某岛C周围4海里内有暗礁,一轮船沿正东方向航行,在A处测得该岛在东偏南15°处,继续航行10海里到达B处,又测得该岛位于东偏南30°处,若该船不改变航向,有无触礁危险?【答案】见试题解答内容【解答】解:作CD⊥AB于D,则Rt△BCD中,∵∠CBD=30°,∴BC=2CD.又∵∠CAB=15°,∴∠ACB=15°.∴AB=BC=10.∴CD=5>4.故该轮船没有触礁的危险.【变式3-4】(2021•黄州区校级自主招生)南海诸岛自古以来都是中国的领土,4月12日,中央军委在南海海域隆重举行海上阅兵,军委主席习近平登上长沙舰检阅海军舰艇编队,包括辽宁号航母在内的48艘舰艇参加了阅兵仪式.如图,A、B是两处海港,其中A在B东偏南30〫方向千米处,辽宁号航母从海港A出发,沿东偏北45〫方向,以15千米/小时的速度匀速航行,两小时后,长沙舰从海港B出发,沿东偏北15〫的方向匀速航行,两舰恰好同时到达阅兵地点C.(1)长沙舰从海港出发航行到达阅兵地点用了多少时间?(2)求长沙舰的航行速度.(结果保留根号)【答案】(1)2;(2)(15+15)千米/小时.【解答】解:(1)由题意得:AB=30千米,∠ABC=30°+15°=45°,∠BAC=(90°﹣30°)+45°=105°,∴∠C=180°﹣45°﹣105°=30°,过点A作AD⊥BC,垂足为D,在Rt△ABD中,AD=BD=×30=30(千米),在Rt△ADC中,∠C=30°,∴AC=2AD=60,CD=AD=30(千米),∴BC=(30+30)千米,∴辽宁号航母从A到C的时间为60÷15=4(小时),则长沙舰从B到C所用时间为4﹣2=2(小时),答:长沙舰从海港出发航行到达阅兵地点用了2小时.(2)长沙舰的速度为(30+30)÷2=(15+15)千米/小时,答:长沙舰的航行速度为(15+15)千米/小时.【变式3-5】(2023春•青阳县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【答案】见试题解答内容【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【变式3-6】(2022春•大方县期中)如图第4号台风“黑格比”的中心于2020年8月5日下午位于浙江省绍兴市境内的B处,最大风力有9级(23m/s),中心最低气压为990百帕,台风中心沿大约东北(BC)方向以25km/h的速度向D移动在距离B地250km的正北方有一A地,已知A地到BC的距离AD=70km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心70km的圆形区域内都将有受到台风破坏的危险,正在D点休闲的游人在接到台风警报后的几个小时内撤离才可脱离危险?【答案】台风中心经过9.6小时从B移动到D点;游人在6.8小时内撤离才可脱离危险.【解答】解:在Rt△ABD中,根据勾股定理,得BD===240(km),∴240÷25=9.6(小时),则台风中心经过9.6小时从B移动到D点;如图,∵距台风中心70km的圆形区域内都会受到不同程度的影响,∴人们要在台风中心到达E点之前撤离,∵BE=BD﹣DE=240﹣70=170(km),∴170÷25=6.8(小时),答:游人在6.8小时内撤离才可脱离危险.【题型4风吹荷花问题】【典例4】(2022秋•南关区校级期末)如图,水池中离岸边D点4米的C处,直立长着一根芦苇,出水部分BC的长是2米,把芦苇拉到岸边,它的顶端B恰好落到D点,则水池的深度AC为多少米.【答案】3米.【解答】解:设水池的深度为x米,由题意得:x2+42=(x+2)2,解得:x=3.答:水池的深度为3米.【变式4-1】(2022秋•朝阳区期末)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm【答案】D【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),所以18﹣15=3(cm),18﹣12=6(cm).则这只铅笔在笔筒外面部分长度在3cm~6cm之间.观察选项,只有选项D符合题意.故选:D.【变式4-2】(2022秋•兴平市期末)在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是3.75尺.【答案】3.75.【解答】解:若设湖水的深度x尺.则荷花的长是(x+0.5)米.在直角三角形中,根据勾股定理,得:(x+0.5)2=x2+22,解之得:x=3.75,∴湖水的深度为3.75尺.故答案为:3.75.【变式4-3】(2023春•新化县期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.【答案】8.5m.【解答】解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣1)m,故x2=42+(x﹣1)2,解得:x=8.5,答:绳索AD的长度是8.5m.【题型5垂美四边形问题】【典例5】(2022春•颍上县校级期末)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外卖配送外包合同
- 品牌合作协议书合同
- 手房购房贷款合同
- 建筑工地安防监控合同
- 劳务砌砖分包合同
- 房地产买卖交易合同
- 房屋租赁管理合同
- 工程劳务分包合同价格
- 技术服务咨询费合同
- 化工产品采购合同
- 劳务联合施工协议书
- 2025年广东能源集团云浮蓄能发电有限公司招聘笔试参考题库含答案解析
- 2024年考生面对挑战时的心理调整试题及答案
- 护理不良事件分级及上报流程
- 2025年03月湖北荆门市招硕引博公开招聘1412人笔试历年参考题库考点剖析附解题思路及答案详解
- 2024新疆天泽水利投资发展有限公司及所属二级企业部分岗位社会招聘(30人)笔试参考题库附带答案详解-1
- 地理知识科普
- 幕墙龙骨焊接规范
- 2024年信息安全试题及答案
- 2025年中国铁路投资集团有限公司招聘(28人)笔试参考题库附带答案详解
- 2025年春新苏教版数学一年级下册课件 第四单元 50有多大
评论
0/150
提交评论