2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题【含答案】_第1页
2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题【含答案】_第2页
2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题【含答案】_第3页
2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题【含答案】_第4页
2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是()A. B. C. D.2、(4分)点在一次函数的图象上,则等于()A. B.5 C. D.13、(4分)目前,随着制造技术的不断发展,手机芯片制造即将进入(纳米)制程时代.已知,则用科学记数法表示为()A. B. C. D.4、(4分)如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个 B.2个 C.3个 D.4个5、(4分)设a、b是直角三角形的两条直角边,若该三角形的周长为12,斜边长为5,则ab的值是()A.6 B.8 C.12 D.246、(4分)为了了解某地八年级男生的身高情况,从当地某学校选取了60名男生统计身高情况,60名男生的身高(单位:cm)分组情况如下表所示,则表中a,b的值分别为()分组147.5~157.5157.5~167.5167.5~177.5177.5~187.5频数1026a频率0.3bA.18,6 B.0.3,6C.18,0.1 D.0.3,0.17、(4分)如图,一次函数的图象经过、两点,则不等式的解集是()A. B. C. D.8、(4分)如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有()A.1个 B.2个 C.4个 D.3个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知:如图,、分别是的中线和角平分线,,,则的长等于__.10、(4分)古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).11、(4分)如图,点E是正方形ABCD边AD的中点,连接CE,过点A作AF⊥CE交CE的延长线于点F,过点D作DG⊥CF交CE于点G,已知AD=2,则线段AF的长是_____.12、(4分)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为_____.13、(4分)如图,经过平移后得到,下列说法错误的是()A. B.C. D.三、解答题(本大题共5个小题,共48分)14、(12分)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?15、(8分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.16、(8分)已知一次函数图象经过和两点(1)求此一次函数的解析式;(2)若点在函数图象上,求的值.17、(10分)将一矩形纸片放在直角坐标系中,为原点,点在轴上,点在轴上,.(1)如图1,在上取一点,将沿折叠,使点落在边上的点处,求直线的解析式;(2)如图2,在边上选取适当的点,将沿折叠,使点落在边上的点处,过作于点,交于点,连接,判断四边形的形状,并说明理由;(3)、在(2)的条件下,若点坐标,点在直线上,问坐标轴上是否存在点,使以为顶点的四边形是平行四边形,若存在,请直接写出点坐标;若不存在,请说明理由.18、(10分)某单位计划在暑假阴间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七折优惠;乙旅行社表示可先免去一位游客的费用,其余游客七五折优惠.设该单位参加旅游的人数是x人.选择甲旅行社时,所需费用为元,选择乙旅行社时,所需费用为元.(1)写出甲旅行社收费(元)与参加旅游的人数x(人)之间的关系式.(2)写出乙旅行社收费(元)与参加旅游的人数x(人)之间的关系式.(3)该单位选择哪一家旅行社支付的旅游费用较少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.20、(4分)对于实数,,,表示,两数中较小的数,如,.若关于的函数,的图象关于直线对称,则的取值范围是__,对应的值是__.21、(4分)在平面直角坐标系xoy中,我们把横纵坐标都是整数的点叫做整点,过点(1,2)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在△AOB内部(不包括边界)的整点的坐标是________.22、(4分)若,则的值为__________,的值为________.23、(4分)有一块田地的形状和尺寸如图,则它的面积为_________.二、解答题(本大题共3个小题,共30分)24、(8分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.25、(10分)如图,矩形的对角线、交于点,,.证明:四边形为菱形;若,求四边形的周长.26、(12分)如图,已知一次函数的图象与坐标轴分别交于A、B点,AE平分,交轴于点E.(1)直接写出点A和点B的坐标.(2)求直线AE的表达式.(3)过点B作BFAE于点F,过点F分别作FD//OA交AB于点D,FC//AB交轴于点C,判断四边形ACFD的形状并说明理由,求四边形ACFD的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据直线所在的象限,确定k,b的符号.【详解】由图象可知,两条直线的一次项系数都是负数,且一条直线与y轴的交点在y轴的正半轴上,b为正数,另一条直线的与y轴的交点在y轴的负半轴上,b为负数,符合条件的方程组只有D.故选D.一次函数y=kx+b的图象所在象限与常数k,b的关系是:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限,反之也成立.2、D【解析】

根据待定系数法求得一次函数的解析式,解答即可.【详解】一次函数的图象经过点,解得:,故选:.此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.3、B【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,.故选:.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、C【解析】

仔细分析图象特征,根据横轴和纵轴的意义依次分析各小题即可作出判断.【详解】解:由图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.本题考查实际问题的函数图象.实际问题的函数图象是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5、C【解析】

由该三角形的周长为12,斜边长为5可知a+b+5=12,再根据勾股定理和完全平方公式即可求出ab的值.【详解】解:∵三角形的周长为12,斜边长为5,∴a+b+5=12,∴a+b=7,①∵a、b是直角三角形的两条直角边,∴a2+b2=52,②由②得a2+b2=(a+b)2﹣2ab=52∴72﹣2ab=52ab=12,故选:C.本题考查勾股定理和三角形的周长以及完全平方公式的运用,解题的关键是熟练掌握勾股定理以及完全平方公式.6、C【解析】

解:因为a=61×1.3=18,所以第四组的人数是:61﹣11﹣26﹣18=6,所以b==1.1,故选C.本题考查频数(率)分布表.7、A【解析】

由图象可知:B(1,0),且当x>1时,y<0,即可得到不等式kx+b<0的解集是x>1,即可得出选项.【详解】解:∵一次函数y=kx+b的图象经过A、B两点,

由图象可知:B(1,0),

根据图象当x>1时,y<0,

即:不等式kx+b<0的解集是x>1.

故选:A.本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.8、D【解析】

根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.【详解】∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,AD∥BC,∴∠AEB=∠EBC,∠DEC=∠ECB,∵BE、CE分别平分∠ABC和∠DCB,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠AEB=∠ABE,∠DCE=∠DEC,∴AB=AE,DE=DC,∴AE=DE,∴△ABE和△DCE都是等腰直角三角形,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE,∴①②③都正确,故选D.此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

过D点作DF∥BE,则DF=BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC=AF.【详解】过点作,是的中线,,为中点,,,则,,是的角平分线,,,为中点,为中点,,.故答案为:.本题考查了三角形中线、三角形中位线定理和角平分线的性质以及勾股定理的应用,作出辅助线构建直角三角形是解题的关键.10、25%.【解析】

设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;列出方程,解方程求出,即可得出结果.【详解】解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,由题意得:,解得:,∴,故答案为:25%.本题考查了方程思想解决实际问题,解题的关键是通过题意列出方程,得出a、b、c的关系,进而求出利润率.11、1【解析】

先利用正方形的性质得到∠ADC=90°,CD=AD=1,再利用E点为AD的中点得到AE=DE=,则利用勾股定理可计算出CE=5,然后证明Rt△AEF∽Rt△CED,从而利用相似比可计算出AF的长.【详解】∵四边形ABCD为正方形,∴∠ADC=90°,CD=AD=1,∵点E是正方形ABCD边AD的中点,∴AE=DE=,在Rt△CDE中,∵AF⊥CE,∴∠F=90°,∵∠AEF=∠CED,∴Rt△AEF∽Rt△CED,∴,即∴AF=1.故答案为1.本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质.12、【解析】

解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为y=﹣.本题考查反比例函数系数k的几何意义.13、D【解析】

根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【详解】A、AB∥DE,正确;B、,正确;C、AD=BE,正确;D、,故错误,故选D.本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)B型商品的进价为120元,A型商品的进价为150元;(2)5500元.【解析】

(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.【详解】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意:解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∴m=50时,w有最小值=5500(元)此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.15、(1)矩形EFGH的面积为S=-x2+x(0<x<1);(2)S=.【解析】

(1)连接BD交EF于点M,根据菱形的性质得出AB=AD,BD⊥EF,求出△AEH是等边三角形,根据等边三角形的性质得出∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,求出EM=BE,即可求出答案;(2)根据正方形的性质求出x,再求出面积即可.【详解】(1)连接BD交EF于点M,∵四边形ABCD是菱形,∴AB=AD,∵AE=AH,∴EH∥BD∥FG,BD⊥EF,∵在菱形ABCD中,∠A=60°,AE=AH,∴△AEH是等边三角形,∴∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,∴EM=BE,∴EF=BE,∵AB=1,AE=x,∴矩形EFGH的面积为S=EH×EF=x×(1-x)=-x2+x(0<x<1);(2)当矩形EFGH是正方形时,EH=EF,即x=(1-x),解得:x=,所以S=x2=()2=.考查了矩形的性质,菱形的性质,等边三角形的性质和判定,二次函数的解析式,正方形的性质,解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.16、(1)(2)【解析】

(1)用待定系数法,设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.

(2)将点(m,2)代入可得关于m的方程,解出即可.【详解】解:(1)设一次函数的解析式为,则有,解得:,一次函数的解析式为;(2)点在一次函数图象上,.本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法求一次函数解析式.17、(1);(2)四边形为菱形,理由详见解析;(3)以为顶点的四边形是平行四边形时,点坐标或或【解析】

(1)根据题意求得点E的坐标,再代入,把代入得到,即可解答(2)先由折叠的性质得出,由平行线的性质得出,即四边形为菱形.(3)为顶点的四边形是平行四边形时,点坐标或或.【详解】解:(1)如图1中,,是由翻折得到,,在中,,,设,在中,,解得,,设直线的解析式为,把代入得到,直线的解析式为.(2)如图2中,四边形为菱形,理由:是由翻折得到,,.,,而.四边形为菱形.(3)以为顶点的四边形是平行四边形时,点坐标或或.本题考查四边形综合,根据题意做辅助线和判断等量关系列出方程是解题关键.18、(1);(2);(3)当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社,见解析.【解析】

(1)根据甲旅行社的优惠方式,可计算出y1与x之间的关系.

(2)根据乙旅行社的优惠方式,可计算出y2与x之间的关系.

(3)根据(1)(2)的表达式,利用不等式的知识可得出人数多少克选择旅行社.【详解】(1);(2)根据乙旅行社的优惠方式;;(3)①甲社总费用=乙社总费用的情况,此时,解得:;即当时,两家费用一样.②甲社总费用多于乙社总费用的情况:,解不等式得:,即当时,乙旅行社费用较低.③甲社总费用少于乙社总费用的情况,此时解得:即当时,甲旅行社费用较低.答:当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社.此题考查了一次函数的应用,解答本题的关键是得出甲乙旅行社收费与人数之间的关系式,利用不等式的知识解答,难度一般.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

解:应分(70-42)÷4=7,

∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.

故答案为:1.20、或,6或3.【解析】

先根据函数可知此函数的对称轴为y轴,由于函数关于直线x=3对称,所以数,的图象即为的图象,据此解答即可【详解】设,①当与关于对称时,可得,②在,中,与没重合部分,即无论为何值,即恒小于等于,那么由于对对称,也即对于对称,得,.综上所述,或,对应的值为6或3故答案为或,6或3此题考查函数的最值及其几何意义,解题关键在于分情况讨论21、(1,1)和(2,1).【解析】

设直线AB的解析式为,由直线AB上一点的坐标利用待定系数法即可求出b值,画出图形,即可得出结论.【详解】解:设直线AB的解析式为,∵点(1,2)在直线AB上,∴,解得:b=,∴直线AB的解析式为.∴点A(5,0),点B(0,).画出图形,如图所示:∴在△AOB内部(不包括边界)的整点的坐标是:(1,1)和(2,1).本题考查了两条直线平行问题以及待定系数法求函数解析式,解题的关键是画出图形,利用数形结合解决问题.本题属于基础题,难度不大,解决该题目时,由点的坐标利用待定系数法求出函数解析式是关键.22、,【解析】

令,用含k的式子分别表示出,代入求值即可.【详解】解:令,则,所以,.故答案为:(1).,(2).本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.23、1.【解析】

先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.【详解】连接AC,∵△ACD是直角三角形,∴,因为102+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×24×10-×6×8=120-24=1,故答案为:1.本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、解答题(本大题共3个小题,共30分)24、1【解析】

根据平行四边形的周长求出BC+CD=20,再根据平行四边形的面积求出BC=CD,然后求出CD的值,再根据平行四边形的面积公式计算即可得解.【详解】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF•CD=6CD=6×8=1.本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.25、(1)见解析;(2)8【解析】

(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,

(2)求出OC=OD=2,由菱形的性质即可得出答案.【详解】证明:∵,,∴四边形为平行四边形

又∵四边形

是矩形∴

∴四边形为菱形;解:∵四边形

是矩形∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论