版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
答案第=page11页,共=sectionpages22页湘教版八年级下册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是A.B.C.D.2.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①② B.选②③ C.选①③ D.选②④3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(
)A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列各组数据中,不能作为一个直角三角形三边长的一组是()A. B. C. D.5.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)6.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF= D.AF=EF7.如图,Rt△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,AD=10,则点D到AB的距离是(
)A.8 B.5 C.6 D.48.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米 B.10米 C.12米 D.14米9.下列四组线段中,可以构成直角三角形的是(
)A.2,3,4 B.4,5,6 C.1,,3 D.1,,10.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20二、填空题11.如图,Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线,AC=8,,则D到AB的距离为________.12.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是_____.13.如图,已知矩形ABCD,一条直线把矩形分割成两个多边形,若两个多边形的内角和分别为和,则的最小值为________.14.如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)15.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为__________.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;三、解答题17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.18.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)19.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形;为什么.20.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.21.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.22.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.23..已知如图,DC=4,AC=3,∠ACD=90°,AB=13,BD=12.试求出:(1)∠ADB的度数.(2)求出△ABD的面积.24.已知:□ABCD的周长为60cm,对角线AC、BD相交于点O,△AOD的周长比△BOA的周长长5cm,求这个平行四边形各边的长.25.在四边形中,,,,,点从出发以的速度向运动,点从点出发,以的速度向点运动,当其中一点到达终点,而另一点也随之停止,设运动时间为.(1)取何值时,四边形为矩形?(2)是上一点,且,取何值时,以、、、为顶点的四边形是平行四边形?参考答案1.D【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2.B【详解】试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.考点:1.正方形的判定;2.平行四边形的性质.3.D【详解】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.4.A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.【详解】A、,不符合勾股定理的逆定理,故本选项符合题意;B、,符合勾股定理的逆定理,故本选项不符合题意;C、,符合勾股定理的逆定理,故本选项不符合题意;D、,符合勾股定理的逆定理,故本选项不符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.C【解析】【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点在x轴上,O=2,所以,(﹣2,0),②若逆时针旋转,则点到x轴的距离为10,到y轴的距离为2,所以,(2,10),综上所述,点的坐标为(2,10)或(﹣2,0).故选:C.【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.6.D【解析】【详解】试题分析:∵AD∥BC,∴∠AFE=∠FEC,∵∠AEF=∠FEC,∴∠AFE=∠AEF,∴AF=AE,∴选项A正确;∵ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AG=DC,∠G=∠C,∴∠B=∠G=90°,AB=AG,∵AE=AF,∴△ABE≌△AGF,∴选项B正确;设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,,即,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=,∴选项C正确;由已知条件无法确定AF和EF的关系,故选D.考点:翻折变换(折叠问题).7.B【解析】【分析】作DE⊥AB于E,根据角平分线的定义得到∠DAB=30°,根据等角对等边得到BD=AD=10,然后利用30°所对直角边是斜边的一般求解.【详解】解:作DE⊥AB于E,∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=30°,∴∠B=∠DAB,∴BD=AD=10,∴在Rt△DEB中,DE=BD=5,即点D到AB的距离是5,故选B.【点睛】本题考查的是角平分线的性质、等角对等边,含30°直角三角形的性质,掌握直角三角形中30°所对直角边是斜边的一般是解题的关键.8.B【解析】【详解】试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.9.D【解析】【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【详解】解:A、32+22≠42,即三角形不是直角三角形,故本选项错误;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、12+()2≠32,即三角形不是直角三角形,故本选项错误;D、12+()2=()2,即三角形是直角三角形,故本选项正确;故选D.【点睛】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.10.C【解析】【详解】试题分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选C.考点:菱形的性质,勾股定理.11.【解析】【分析】根据题意作辅助线,然后根据角平分线的性质得出DE=CD,根据已知可得CD=,所以DE=,即D点到BC的距离可得.【详解】过点D作DE⊥AB于点E,∵已知∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴∠C=∠DEB=90°,根据角平分线的性质可得:DE=CD.∵AC=8,DC=AD,∴CD=,∴DE=,∴D到AB的距离为,故答案为:.【点睛】本题主要考查角平分线的性质,正确作出辅助线是解决本题的关键.12.2【解析】【详解】试题分析:解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=AD=2,故答案为2.【点睛】本题考查三角形中位线定理;含30度角的直角三角形.13.【解析】【分析】根据多边形内角和定理:,列出M+N的式子,然后求出最小值.【详解】一条直线将该矩形ABCD分割成两个多边形,设两个多边形的分别为m边形和n边形,则M+N=,∵,,∴,即最小值为:.故答案为:.【点睛】本题主要考查了多边形的内角和定理,解答本题的关键是掌握多边形的内角和定理.14.①④【解析】【详解】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.15.30°.【解析】【详解】∵四边形ABCD是平行四边形∴AB∥DC,∠ABC=∠D∴∠DAB+∠D=180°,∵∠D=100°,∴∠DAB=80°,∠ABC=100°又∵∠DAB的平分线交DC于点E∴∠EAD=∠EAB=40°∵AE=AB∴∠ABE=(180°-40°)=70°∴∠EBC=∠ABC-∠ABE=100°-70°=30°.考点:1.角平分线的性质;2.平行四边形的性质.16.6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.17.(1)(﹣3,2);(2)作图见解析(3)(﹣2,3).【解析】【详解】试题分析:(1)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(2)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(1)因为B的坐标是(3,2),所以B关于y轴对称的点的坐标是(-3,2)(2)将A向左移三个格得到A1,O向左平移三个单位得到O1,B向左平移三个单位得到B1,再连线得到△A1O1B1.(3)因为A的坐标是(1,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A1是(-2,3).考点:1.关于y轴对称点坐标规律2.图形平移后点的坐标规律18.直线L上距离D点566米的C处开挖.【解析】【详解】试题分析:根据条件证明∠D=∠DBC=45°,得出△BCD是等腰直角三角形,然后利用勾股定理可得CD2+BC2=BD2计算即可.试题解析:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),答:直线L上距离D点566米的C处开挖.考点:勾股定理的应用.19.(1)证明见解析;(2)当AB=BC时,四边形DBEF是菱形,理由见解析.【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明.(2)根据邻边相等的平行四边形是菱形证明.【详解】解:(1)∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线.∴DE∥BC.又∵EF∥AB,∴四边形DBFE是平行四边形.(2)当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB.∵DE是△ABC的中位线,∴DE=BC.∵AB=BC,∴BD=DE.又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(1)证明见解析;(2)∠EBC=30°.【解析】【分析】(1)由矩形的性质和折叠的性质可得DE=BC,∠E=∠C=90°,对顶角∠DFE=∠BFC,利用AAS可判定△DEF≌△BCF;(2)由已知知△ABD是直角三角形,由已知AD=3,BD=6,可得出∠ABD=30°,然后利用折叠的性质可得∠DBE=30°,继而可求得∠EBC的度数.【详解】解:(1)由折叠的性质可得:DE=BC,∠E=∠C=90°,在△DEF和△BCF中,,∴△DEF≌△BCF(AAS);(2)在Rt△ABD中,∵AD=3,BD=6,∴∠ABD=30°,由折叠的性质可得;∠DBE=∠ABD=30°,∴∠EBC=90°﹣30°﹣30°=30°.【点睛】本题考查1、矩形的性质;2、全等三角形的判定与性质;3、图形的翻折.21.(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.【解析】【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【详解】试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点睛】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.22.(1)12,(2)【解析】【分析】(1)首先根据菱形的性质可得菱形的边长为48÷4=12cm,然后再证明△ABC是等边三角形,进而得到AC=AB=12cm,然后再根据勾股定理得出BO的长,进而可得BD的长即可;(2)根据菱形的面积公式=对角线之积的一半可得答案.【详解】解:(1)∵菱形ABCD的周长是48cm,∴AB=BC=CD=DA=12cm,又∵∠ABC与∠BAD的度数比为1:2,∠ABC=60°,∴△ABC是正三角形,AC=AB=12cm,又∠ABO=30°,∴AO=6cm,BO=cm,BD=cm,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防汛应急预案怎样写
- 《供配电技术》2.3 教案
- 电话销售转正总结8篇
- 省级医院主治医生聘用合同(32篇)
- 幼儿园大班家长工作计划
- 大学毕业生的自我总结(3篇)
- 幼儿园社会实践个人总结范文(31篇)
- DB12-T 1097-2021 公路水运品质工程示范创建评价规范
- 河南省新乡市(2024年-2025年小学五年级语文)人教版期末考试(下学期)试卷及答案
- 2024年水处理阻垢分散剂系列项目投资申请报告代可行性研究报告
- 我们学习的榜样4王继才PPT课件模板
- 第五章旅游餐饮设计ppt课件
- 2022年心理名师工作室三年发展规划及年度实施计划工作计划思路范文
- DB32∕T 4284-2022 居民住宅二次供水工程技术规程
- 长沙市某办公建筑的冰蓄冷空调系统的设计毕业设计
- 消火栓灭火器检查记录表
- 岸墙、翼墙及导水墙砼浇筑方案
- 第三章_配位化学
- 最新中小学人工智能教育实验学校申报材料
- 缠论基本概念图解(推荐)
- 海瑞克英文翻译
评论
0/150
提交评论