版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区呼伦贝尔市满洲里市2025届数学八年级第一学期期末联考模拟试题第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知样本数据1,2,4,3,5,下列说法不正确的是()A.平均数是3 B.中位数是4C.极差是4 D.方差是22.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为15cm,则该圆柱底面周长为()cm.A.9 B.10 C.18 D.203.通辽玉米,通辽特产,全国农产品地理标志,以色泽金黄,颗粒饱满,角质率高,含水率低,富含多种氨基酸和微量元素,闻名全国,已知每粒玉米重0.000395千克,0.000395用科学记数法表示()A. B. C. D.4.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.5.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.66.已知+=0,则的值是()A.-6 B. C.9 D.-87.如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4 B.3 C.2 D.18.不等式组12x≤1A. B. C. D.9.已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.310.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于长为半径画弧,两弧交于点,作射线交于点,若,,则的面积为().A.10 B.15 C.20 D.3011.如图,在中,分别是的中点,点在延长线上,添加一个条件使四边形为平行四边形,则这个条件是()A. B. C. D.12.下列各选项中,所求的最简公分母错误的是()A.与的最简公分母是6x B.与最简公分母是3a2b3cC.与的最简公分母是 D.与的最简公分母是m2-n2二、填空题(每题4分,共24分)13.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.14.函数y=中的自变量的取值范围是____________.15.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A,B两地之间的距离为________千米.16.分解因式:3a2+6ab+3b2=________________.17.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。18.在平面直角坐标系中,点A、B、C的坐标分别为:A(﹣2,1),B(﹣3,﹣1),C(1,﹣1).若以A,B,C,D为顶点的四边形为平行四边形,那么点D的坐标是_____.三、解答题(共78分)19.(8分)如图,三个顶点的坐标分别为,,(1)若与关于轴成轴对称,画出,并直接写出三个顶点坐标为_____,______,_______;(2)在轴上是否存在点.使得,如果在,求出点的坐标,如果不存在,说明理由;(3)在轴上找一点,使的值最小,请直接写出点的坐标是______.20.(8分)计算:(1)(2)先化简,再求值:[(2m+n)(2m-n)+(m+n)2-2(2m2-mn)]÷(-4m),其中m=1,n=.21.(8分)化简:(1).(2)(1+)÷.22.(10分)(1)解方程组(2)解不等式组23.(10分)计划新建的北京至张家口铁路全长180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的倍,用时比普通快车少20分钟.求高铁列车的平均行驶速度.24.(10分)求不等式组的正整数解.25.(12分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?26.先化简,再求值:1-÷,其中x=-2.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:A、这组数据的平均数是:(1+2+4+3+5)÷5=3,故本选项正确;B、把这组数据从小到大排列:1,2,3,4,5,则中位数是3,故本选项错误;C、这组数据的极差是:5-1=4,故本选项正确;D、这组数据的方差是2,故本选项正确;故选B.考点:方差;算术平均数;中位数;极差.2、C【分析】将容器侧面展开,建立A关于上边沿的对称点A’,根据两点之间线段最短可知A’B的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.【详解】解:如图,将容器侧面展开,作A关于EF的对称点,连接,则即为最短距离,根据题意:,,.所以底面圆的周长为9×2=18cm.故选:C.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.3、C【分析】根据科学记数法的表示方法进行表示即可.【详解】解:0.000395=,故选:C.【点睛】本题考查了科学记数法,掌握科学记数法的表示形式即可.4、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5、B【解析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.6、B【分析】根据非负数的性质可得x、y的值,代入即可得出答案.【详解】解:∵+=0,∴x+2=0,y-3=0,∴x=-2,y=3,∴yx=3-2=.故选:B.【点睛】本题考查了非负数的性质——偶次幂和二次根式,以及负指数幂,根据非负数的性质得出x、y的值是解决此题的关键.7、B【分析】根据题意逐个证明即可,①只要证明,即可证明;②利用三角形的外角性质即可证明;④作于,于,再证明即可证明平分.【详解】解:∵,∴,即,在和中,,∴,∴,①正确;∴,由三角形的外角性质得:∴°,②正确;作于,于,如图所示:则°,在和中,,∴,∴,∴平分,④正确;正确的个数有3个;故选B.【点睛】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.8、C【分析】先求出两个不等式的解集,再求其公共解.【详解】解:由12x≤2得:x≤2.由2-x<3得:x>-2.所以不等式组的解集为-2<x≤2故选C.【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9、C【分析】根据完全平方公式可得,,再把两式相加即可求得结果.【详解】解:由题意得,把两式相加可得,则故选C.考点:完全平方公式点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.10、B【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,过作于,则,再根据三角形的面积公式即可求得.【详解】根据题中所作,为的平分线,∵,∴,过作于,则,∵,∴.选B.【点睛】本题的关键是根据作图过程明确AP是角平分线,然后根据角平分线的性质得出三角形ABD的高.11、B【分析】利用三角形中位线定理得到,结合平行四边形的判定定理进行选择.【详解】∵在中,分别是的中点,∴是的中位线,∴.A、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.B、根据可以判定,即,由“两组对边分别平行的四边形是平行四边形”得到四边形为平行四边形,故本选项正确.C、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.D、根据不能判定四边形为平行四边形,故本选项错误.故选B.【点睛】本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.12、C【解析】A.与的最简公分母是6x,故正确;B.与最简公分母是3a2b3c,故正确;C.与的最简公分母是,故不正确;D.与的最简公分母是m2-n2,故正确;故选C.二、填空题(每题4分,共24分)13、150cm【解析】试题解析:如图,彩色丝带的总长度为=150cm.
14、x≠1【分析】根据分母不等于0列式计算即可得解.【详解】根据题意得,x-1≠0,解得:x≠1.故答案为x≠1.15、450【解析】试题分析:设甲车的速度为x千米/时,乙车的速度为y千米/时,由题意得:,解得:,故A,B两地之间的距离为5×90=450(千米).点睛:本题主要考查的就是函数图像的实际应用以及二元一次方程组的应用结合题型,属于中等难度.解决这个问题的时候,我们一定要明确每一段函数的实际意义,然后利用二元一次方程组的实际应用来解决这个问题.对于这种题型,关键我们就是要理解函数图像的实际意义,然后将题目进行简化得出答案.16、3(a+b)1【解析】先提取公因式3,再根据完全平方公式进行二次分解.完全平方公式:a1+1ab+b1=(a+b)1.【详解】3a1+6ab+3b1=3(a1+1ab+b1)=3(a+b)1.故答案为:3(a+b)1.【点睛】本题考查了提公因式法,公式法分解因式.提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17、【解析】首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【详解】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC=,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=.故答案为:.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.18、(﹣6,1)或(2,1)或(0,﹣3)【分析】如图,首先易得点D纵坐标为1,然后根据平行四边形性质和全等三角形的性质易得点D横坐标为2;同理易得另外两种情况下的点D的坐标.【详解】解:如图,过点A、D作AE⊥BC、DF⊥BC,垂足分别为E、F,∵以A,B,C,D为顶点的四边形为平行四边形,∴AD∥BC,∵B(﹣3,﹣1)、C(1,﹣1);∴BC∥x轴∥AD,∵A(﹣2,1),∴点D纵坐标为1,∵▱ABCD中,AE⊥BC,DF⊥BC,易得△ABE≌△DCF,∴CF=BE=1,∴点D横坐标为1+1=2,∴点D(2,1),同理可得,当D点在A点左侧时,D点坐标为(﹣6,1);当D点在C点下方时,D点坐标为(0,﹣3);综上所述,点D坐标为(﹣6,1)或(2,1)或(0,﹣3),故答案为:(﹣6,1)或(2,1)或(0,﹣3).【点睛】本题主要考查了坐标与图形性质和平行四边形的性质,注意要分情况求解.三、解答题(共78分)19、(1)图见解析,,,;(2)存在,或;(3)【分析】(1)作出、、关于轴的对称点、、即可得到坐标;(2)存在.设,根据三角形的面积公式,构建方程即可解决问题;(3)作点关于轴的对称点,连接交轴于,此时的值最小.【详解】解:(1)如图所示,,,.(2)存在.设,,,,,或.(3)如图作点关于轴的对称点,连接交轴于,此时的值最小,此时点的坐标是.【点睛】本题考查轴对称最短路线问题、三角形的面积、坐标与图形变化等知识,熟悉相关性质是解题的关键.20、(1)-27a10;(2),【解析】(1)根据积的乘方、单项式乘单项式以及整式除法法则计算即可;(2)根据整式的混合运算法则把原式化简,代入计算即可.【详解】(1)原式==-27a11÷a=-27a10;(2)原式=[4m2-n2+(m2+2mn+n2)-(4m2-2mn)]÷(-4m)=(4m2-n2+m2+2mn+n2-4m2+2mn)÷(-4m)=(m2+4mn)÷(-4m)=当m=1,n=时,原式==.【点睛】本题考查了整式的混合运算,掌握平方差公式、完全平方公式、合并同类项法则是解题的关键21、(1)(2)a-1【解析】试题分析:(1)首先将各项分子分母因式分解,能约分的约分,然后再通分,得出最终结果即可;(2)对括号里面的式子通分,并对除号后面的分式的分母因式分解,然后将除法变为乘法,约分计算出最终结果即可.试题解析:(1)++2=++2=++2==;(2)(1+)÷=÷=×=a-1.点睛:熟练掌握因式分解的方法是分式化简的关键.22、(1);(2).【分析】(1)利用加减消元法解方程组,即可得到答案.(2)先求出每个不等式的解集,然后取解集的公共部分,即可得到答案.【详解】解:(1),由①+②,得:,∴,把代入②,解得:,∴方程组的解是:;(2)解不等式①,得:;解不等式②,得:;∴不等式组的解集为:.【点睛】本题考查了解一元一次不等式组,解二元一次方程组,解题的关键是熟练掌握解方程组和解不等式组的步骤和方法.23、【分析】首先设普通快车的平均行驶速度为,京张高铁列车的平均速度为,利用京张高铁列车用时比普通快车少20分钟得出相等关系进而求出答案.【详解】解:设普通快车的平均行驶速度为,则京张高铁列车的平均行驶速度为,由题意得:解之得:经检验,是原方程的解,∴答:高铁列车的平均行驶速度为.【点睛】本题考查知识点是列分式方程解决实际问题,解题的关键是找到包含题目全部含义的相等关系.24、不等式组的正整数解为:1,2,3【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求出其正整数解即可.【详解】解:解不等式①得:,解不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新教材高考地理二轮复习综合题专项训练六地理过程类含答案
- 【华师】第三次月考卷
- 语文教学论教案 第三章 语文教学设计
- 调研报告:医疗保险基金管理使用中存在的问题及建议
- 金属的腐蚀与防护-2024年高中化学讲义
- 联盟加盟合同模板
- 挖掘机租赁合同示范文本
- 房地产抵押合同2024年
- 银行承兑汇票贴现协议模板
- 股权投资合作协议格式设计
- HACCP风险评估报告样板
- 大学生职业生涯规划(师范类)
- 因孩子上学房子过户协议书
- 部编版四年级语文上册课内阅读复习试题含答案全套
- 幼儿园课程审议制度
- 英语演讲技巧与实训学习通课后章节答案期末考试题库2023年
- TSG特种设备安全技术规范
- 中国民族民俗:白族三道茶
- 自动扶梯与自动人行道2023版自行检测规则
- TD-T 1044-2014 生产项目土地复垦验收规程
- 《鲁滨逊漂流记》读书心得600字左右5篇
评论
0/150
提交评论