81-2024年江苏省南通市中考数学试卷_第1页
81-2024年江苏省南通市中考数学试卷_第2页
81-2024年江苏省南通市中考数学试卷_第3页
81-2024年江苏省南通市中考数学试卷_第4页
81-2024年江苏省南通市中考数学试卷_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2024年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃ B.3℃ C.﹣5℃ D.5℃2.(3分)2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为()A.158.2×109 B.15.82×1010 C.1.582×1011 D.1.582×10123.(3分)计算×的结果是()A.9 B.3 C.3 D.4.(3分)如图是一个几何体的三视图,该几何体是()A.球 B.棱柱 C.圆柱 D.圆锥5.(3分)如图,直线a∥b,矩形ABCD的顶点A在直线b上,若∠2=41°,则∠1的度数为()A.41° B.51° C.49° D.59°6.(3分)红星村种的水稻2021年平均每公顷产7200kg,2023年平均每公顷产8450kg.求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x,列方程为()A.7200(1+x)2=8450 B.7200(1+2x)=8450 C.8450(1﹣x)2=7200 D.8450(1﹣2x)=72007.(3分)将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为()A.(﹣4,﹣1) B.(﹣4,2) C.(2,1) D.(2,﹣2)8.(3分)“赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,n(m>n).若小正方形面积为5,(m+n)2=21,则大正方形面积为()A.12 B.13 C.14 D.159.(3分)甲、乙两人沿相同路线由A地到B地匀速前进,两地之间的路程为20km.两人前进路程s(单位:km)与甲的前进时间t(单位:h)之间的对应关系如图所示.根据图象信息,下列说法正确的是()A.甲比乙晚出发1h B.乙全程共用2h C.乙比甲早到B地3h D.甲的速度是5km/h10.(3分)在△ABC中,∠B=∠C=α(0°<α<45°),AH⊥BC,垂足为H,D是线段HC上的动点(不与点H,C重合),将线段DH绕点D顺时针旋转2α得到线段DE.两位同学经过深入研究,小明发现:当点E落在边AC上时,点D为HC的中点;小丽发现:连接AE,当AE的长最小时,AH2=AB•AE请对两位同学的发现作出评判()A.小明正确,小丽错误 B.小明错误,小丽正确 C.小明、小丽都正确 D.小明、小丽都错误二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)分解因式:ax﹣ay=.12.(3分)已知圆锥底面半径为2cm,母线长为6cm,则该圆锥的侧面积是cm2.13.(4分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根.请写出一个满足题意的k的值:.14.(4分)社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B处测得旗杆顶部A的仰角为60°,BC=6m,则旗杆AC的高度为m.15.(4分)若菱形的周长为20cm,且有一个内角为45°,则该菱形的高为cm.16.(4分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=5.正方形DEFG的边长为,它的顶点D,E,G分别在△ABC的边上,则BG的长为.18.(4分)平面直角坐标系xOy中,已知A(3,0),B(0,3).直线y=kx+b(k,b为常数,且k>0)经过点(1,0),并把△AOB分成两部分,其中靠近原点部分的面积为,则k的值为.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(12分)(1)计算:2m(m﹣1)﹣m(m+1);(2)解方程﹣1=.20.(10分)我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.50个家庭去年月均用水量频数分布表组别家庭月均用水量(单位:吨)频数A2.0≤t<3.47B3.4≤t<4.8mC4.8≤t<6.2nD6.2≤t<7.66E7.6≤t<9.02合计50根据上述信息,解答下列问题:(1)m=,n=;(2)这50个家庭去年月均用水量的中位数落在组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?21.(10分)如图,点D在△ABC的边AB上,DF经过边AC的中点E,且EF=DE.求证:CF∥AB.22.(10分)南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.23.(10分)如图,△ABC中,AB=3,AC=4,BC=5,⊙A与BC相切于点D.(1)求图中阴影部分的面积;(2)设⊙A上有一动点P,连接CP,BP.当CP的长最大时,求BP的长.24.(12分)某快递企业为提高工作效率,拟购买A、B两种型号智能机器人进行快递分拣.相关信息如下:信息一A型机器人台数B型机器人台数总费用(单位:万元)1326032360信息二A型机器人每台每天可分拣快递22万件;B型机器人每台每天可分拣快递18万件.(1)求A、B两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A、B两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?25.(13分)已知函数y=(x﹣a)2+(x﹣b)2(a,b为常数).设自变量x取x0时,y取得最小值.(1)若a=﹣1,b=3,求x0的值;(2)在平面直角坐标系xOy中,点P(a,b)在双曲线y=﹣上,且x0=.求点P到y轴的距离;(3)当a2﹣2a﹣2b+3=0,且1≤x0<3时,分析并确定整数a的个数.26.(13分)综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动.【特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线AD的长∠BAD的度数腰长两腰之和两腰之积图①160°244图②145°2图③130°请补全表格中数据,并完成以下猜想.已知△ABC的角平分线AD=1,AB=AC,∠BAD=α,用含α的等式写出两腰之和AB+AC与两腰之积AB•AC之间的数量关系:.【变式思考】(2)已知△ABC的角平分线AD=1,∠BAC=60°,用等式写出两边之和AB+AC与两边之积AB•AC之间的数量关系,并证明.【拓展运用】(3)如图④,△ABC中,AB=AC=1,点D在边AC上,BD=BC=AD.以点C为圆心,CD长为半径作弧与线段BD相交于点E,过点E作任意直线与边AB,BC分别交于M,N两点.请补全图形,并分析+的值是否变化?

2024年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃ B.3℃ C.﹣5℃ D.5℃【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,如果零上2℃记作+2℃,那么零下3℃记作﹣3℃.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.(3分)2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为()A.158.2×109 B.15.82×1010 C.1.582×1011 D.1.582×1012【分析】根据科学记数法表示数的方法,对所给较大数进行表示即可.【解答】解:由题知,1582亿=1582×108=1.582×103×108=1.582×1011.故选:C.【点评】本题主要考查了科学记数法﹣表示较大的数,熟知科学记数法表示较大数的方法是解题的关键.3.(3分)计算×的结果是()A.9 B.3 C.3 D.【分析】根据二次根式的乘法法则对所给算式进行计算即可.【解答】解:.故选:B.【点评】本题主要考查了二次根式的乘除法及二次根式的性质与化简,熟知二次根式的乘法法则是解题的关键.4.(3分)如图是一个几何体的三视图,该几何体是()A.球 B.棱柱 C.圆柱 D.圆锥【分析】结合三视图与原几何体的关系即可解决问题.【解答】解:由所给三视图可知,该几何体为圆锥.故选:D.【点评】本题主要考查了由三视图判断几何体,熟知常见几何体的三视图是解题的关键.5.(3分)如图,直线a∥b,矩形ABCD的顶点A在直线b上,若∠2=41°,则∠1的度数为()A.41° B.51° C.49° D.59°【分析】根据矩形的性质得出∠B=90°,再结合平行线的性质即可解决问题.【解答】解:延长CB与直线b交于点M,∵a∥b,∠2=41°,∴∠BMA=∠2=41°.∵四边形ABCD是矩形,∴∠ABC=90°,∴∠1+∠BMA=90°,∴∠1=90°﹣41°=49°.故选:C.【点评】本题主要考查了矩形的性质及平行线的性质,熟知矩形的性质及平行线的性质是解题的关键.6.(3分)红星村种的水稻2021年平均每公顷产7200kg,2023年平均每公顷产8450kg.求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x,列方程为()A.7200(1+x)2=8450 B.7200(1+2x)=8450 C.8450(1﹣x)2=7200 D.8450(1﹣2x)=7200【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【解答】解:由题意可得,7200(1+x)2=8450,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.7.(3分)将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为()A.(﹣4,﹣1) B.(﹣4,2) C.(2,1) D.(2,﹣2)【分析】先求出抛物线的顶点坐标,再结合所给平移方式即可解决问题.【解答】解:因为y=x2+2x﹣1=(x+1)2﹣2,所以抛物线y=x2+2x﹣1的顶点坐标为(﹣1,﹣2),所以将此抛物线向右平移3个单位长度后,所得新抛物线的顶点坐标为(2,﹣2).故选:D.【点评】本题主要考查了二次函数图象与几何变换及二次函数的性质,能根据所给二次函数解析式得出抛物线的顶线坐标及熟知平移时点的坐标变化规律是解题的关键.8.(3分)“赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,n(m>n).若小正方形面积为5,(m+n)2=21,则大正方形面积为()A.12 B.13 C.14 D.15【分析】依据题意,由中间小正方形的边长为(m﹣n),根据勾股定理以及题目给出的已知数据即可求出大正方形的面积为(m2+n2),进而可以得解.【解答】解:由题意可知,中间小正方形的边长为m﹣n,∴(m﹣n)2=5,即m2+n2﹣2mn=5①,∵(m+n)2=21,∴m2+n2+2mn=21②,①+②得2(m2+n2)=26,∴大正方形的面积为:m2+n2=13,故选:B.【点评】本题主要考查了勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)甲、乙两人沿相同路线由A地到B地匀速前进,两地之间的路程为20km.两人前进路程s(单位:km)与甲的前进时间t(单位:h)之间的对应关系如图所示.根据图象信息,下列说法正确的是()A.甲比乙晚出发1h B.乙全程共用2h C.乙比甲早到B地3h D.甲的速度是5km/h【分析】根据图象可知,甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度.【解答】解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选:D.【点评】本题考查了函数的图象,培养学生观察图象的能力,分析解决问题的能力,要培养学生视图知信息的能力.10.(3分)在△ABC中,∠B=∠C=α(0°<α<45°),AH⊥BC,垂足为H,D是线段HC上的动点(不与点H,C重合),将线段DH绕点D顺时针旋转2α得到线段DE.两位同学经过深入研究,小明发现:当点E落在边AC上时,点D为HC的中点;小丽发现:连接AE,当AE的长最小时,AH2=AB•AE请对两位同学的发现作出评判()A.小明正确,小丽错误 B.小明错误,小丽正确 C.小明、小丽都正确 D.小明、小丽都错误【分析】根据等腰三角形的性质和旋转的性质即可判断小明的发现正确;当AE的长最小时,AE⊥AC,根据等腰三角形的性质和相似三角形的性质即可判断小丽的发现正确.【解答】解:∵AH⊥BC,∴∠AHB=∠AHC=90°,∵∠B=∠C=α,∴∠BAH=∠CAH=90°﹣α,∵将线段DH绕点D顺时针旋转2α得到线段DE,∴DH=DE,∠HDE=2α,∴∠DEH=∠HDE=2α,∴∠CDE=90°﹣2α,∴∠CDE=∠CAH,∴△CDE≌△CAH(AAS),∴CD=CH,∴点D为HC的中点,∴小明的发现正确,当AE的长最小时,AE⊥AC,∵∠B=∠C=α,∴∠BAC=180°﹣2α,∵∠BAH=∠CAH=90°﹣α,∴∠BAE=∠BAC﹣∠CAE=180°﹣2α﹣90°+α=90°﹣α,∴∠BAE=∠B,∴△BAE∽△BCA,∴AB:BC=AE:AH,∴AH2=AB•AE,∴小丽的发现正确.故选:C.【点评】本题考查了等腰三角形的性质和旋转的性质,相似三角形的判定和性质,熟练掌握性质定理是解题关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)分解因式:ax﹣ay=a(x﹣y).【分析】本题属于因式分解中的基础题,观察多项式的特点,直接运用提公因式法提取公因式a即可分解因式.【解答】解:ax﹣ay=a(x﹣y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.12.(3分)已知圆锥底面半径为2cm,母线长为6cm,则该圆锥的侧面积是12πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×2×6÷2=12πcm2.故答案为:12π.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.13.(4分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根.请写出一个满足题意的k的值:k<1.【分析】根据方程的系数结合根的判别式,即可得出Δ=4﹣4k>0,解之即可得出k值.【解答】【点评】【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴Δ=(﹣2)2﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了一元二次方程根的判别式,熟练掌握“当Δ>0时,方程有两个不相等的实数根”是解题的关键.14.(4分)社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B处测得旗杆顶部A的仰角为60°,BC=6m,则旗杆AC的高度为6m.【分析】依据题意,直接利用锐角三角函数关系即可计算得解.【解答】解:由题意可得:BC=6m,又tan60°===,∴AC=6m.故答案为:6.【点评】本题主要考查了解直角三角形的应用﹣仰角俯角,解题时要熟练掌握并能灵活运用是关键.15.(4分)若菱形的周长为20cm,且有一个内角为45°,则该菱形的高为cm.【分析】根据题意画出图形,再利用45°特殊直角三角形求出菱形的高.【解答】解:过点C作CE⊥AD于点E,∵周长为20cm,∴CD=5cm,∵∠BCD=45°,∴∠CDE=45°,∴高=CE=cm,故答案为:.【点评】本题考查了菱形的性质,掌握菱形的性质是解题的关键.16.(4分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是R≥3.6.【分析】根据图象中的点的坐标先求反比例函数关系式,再由电流不能超过10A列不等式,求出结论,并结合图象.【解答】解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.【点评】本题是反比例函数的应用,会利用待定系数法求反比例函数的关系式,并正确认识图象,运用数形结合的思想,与不等式或等式相结合,解决实际问题.17.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=5.正方形DEFG的边长为,它的顶点D,E,G分别在△ABC的边上,则BG的长为3.【分析】过点G作GH⊥AC于点H,证明△ABC是等腰直角三角形,△AGH是等腰直角三角形,证明△DGH≌△DEC(AAS),得GH=DC,DH=CE,设AH=HG=DC=a,DH=CE=b,得2a+b=5,a2+b2=()2,求出a的值,进而可以解决问题.【解答】解:如图,过点G作GH⊥AC于点H,∵∠ACB=90°,AC=BC=5,∴△ABC是等腰直角三角形,∴∠A=45°,AB=AC=5,∵GH⊥AC,∴△AGH是等腰直角三角形,∴AH=HG,AG=AH,∵四边形DEFG是正方形,∴DG=DE,∠GDE=90°,∴∠GDH=90°﹣∠EDC=90°﹣∠DGH=∠DEC,在△DGH和△DEC中,,∴△DGH≌△DEC(AAS),∴GH=DC,DH=CE,∴AH=HG=DC,设AH=HG=DC=a,DH=CE=b,∵正方形DEFG的边长为,∴DE=,∵AC=AH+DH+DC,DC2+CE2=DE2,∴2a+b=5,a2+b2=()2,将b=5﹣2a代入a2+b2=()2整理得:a2﹣4a+4=0,解得a=2(负值已经舍去),∴AH=a=2,∴AG=AH=2,∴BG=AB﹣AG=5﹣2=3,故答案为:3.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理,代入法解二元二次方程,解一元二次方程,解决本题的关键是准确作出辅助线构造全等三角形.18.(4分)平面直角坐标系xOy中,已知A(3,0),B(0,3).直线y=kx+b(k,b为常数,且k>0)经过点(1,0),并把△AOB分成两部分,其中靠近原点部分的面积为,则k的值为.【分析】将点(1,0)代入直线y=kx+b,将b用k表示出来,利用待定系数法求出AB所在直线的函数关系式,求出它们的交点坐标;根据三角形面积公式求出远离原点部分的面积,从而求出k的值即可.【解答】解:如图,设AB与直线y=kx+b交于点P.设AB所在直线的函数关系式为y=k1x+b1(k1、b1为常数,且k1≠0).将坐标A(3,0)和B(0,3)分别代入y=k1x+b1,得,解得,∴AB所在直线的函数关系式为y=﹣x+3.将点(1,0)代入y=kx+b,得k+b=0,解得b=﹣k,∴直线y=kx+b为y=kx﹣k.,解得,∴P(,),∵SRt△AOB=×3×3=,∴远离原点部分的面积为﹣=,∴×(3﹣1)×=,∴k=.故答案为:.【点评】本题考查一次函数图象上点的坐标特征,利用待定系数法求函数关系、求出交点坐标、掌握三角形的面积公式是解题的关键.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(12分)(1)计算:2m(m﹣1)﹣m(m+1);(2)解方程﹣1=.【分析】(1)根据单项式乘多项式的法则进行计算;(2)根据解分式方程的步骤进行计算.【解答】解:(1)2m(m﹣1)﹣m(m+1)=m2﹣2m﹣m2﹣m=﹣3m;(2)﹣1=,3x﹣(3x+3)=2x,3x﹣3x﹣3=2x,∴x=,经检验,x=是原方程的解.【点评】本题考查了单项式乘多项式,解分式方程,掌握运算法则是解题的关键.20.(10分)我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.50个家庭去年月均用水量频数分布表组别家庭月均用水量(单位:吨)频数A2.0≤t<3.47B3.4≤t<4.8mC4.8≤t<6.2nD6.2≤t<7.66E7.6≤t<9.02合计50根据上述信息,解答下列问题:(1)m=20,n=15;(2)这50个家庭去年月均用水量的中位数落在B组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?【分析】(1)依据题意得,C组的频数n=×50=15,从而B组的频数m=50﹣7﹣15﹣6﹣2=20.,进而可以判断得解;(2)依据题意,根据中位数的意义,由50÷2=25,可得中位数是第25个数和第26个数的平均数,结合A组频数为7,B组频数为20,故可判断得解;(3)依据题意,由50个家庭中去年月均用水量小于4.8吨的家庭数有7+20=27(户),进而可以判断得解.【解答】解:(1)由题意得,C组的频数n=×50=15.∴B组的频数m=50﹣7﹣15﹣6﹣2=20.故答案为:20;15.(2)由题意,根据中位数的意义,∵50÷2=25,∴中位数是第25个数和第26个数的平均数.又∵A组频数为7,B组频数为20,∴这50个家庭去年月均用水量的中位数落在B组.故答案为:B.(3)由题意,∵50个家庭中去年月均用水量小于4.8吨的家庭数有7+20=27(个),∴该小区有1200个家庭估计去年月均用水量小于4.8吨的家庭数有:1200×=648(个).【点评】本题主要考查了中位数、用样本估计总体、频数(率)分布表、加权平均数,解题时要熟练掌握并能灵活运用是关键.21.(10分)如图,点D在△ABC的边AB上,DF经过边AC的中点E,且EF=DE.求证:CF∥AB.【分析】证明△ADE≌△CFE(SAS),得出∠ADE=∠CFE,得到CF∥AB.【解答】证明:∵E是AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠ADE=∠CFE,∴CF∥AB.【点评】本题考查了平行线的判定,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.22.(10分)南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.【分析】(1)甲在2号出入口开展志愿服务活动的概率为;(2)根据题意画出树状图,得出概率.【解答】解:(1)P(甲在2号出入口开展志愿服务活动)=,故答案为:;(2)∵一共有16种情况,甲、乙两人在同一出入口开展志愿服务活动有4种情况,∴P(甲、乙两人在同一出入口开展志愿服务活动)=.【点评】本题考查了概率,掌握树状图法是解题的关键.23.(10分)如图,△ABC中,AB=3,AC=4,BC=5,⊙A与BC相切于点D.(1)求图中阴影部分的面积;(2)设⊙A上有一动点P,连接CP,BP.当CP的长最大时,求BP的长.【分析】(1)计算得出△ABC的面积和扇形的面积,作差得到阴影部分的面积;(2)当C,A,P三点共线时,CP的长最大,通过勾股定理得出BP的长.【解答】解:(1)∵AB=3,AC=4,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∵⊙A与BC相切于点D,∴AD=,S=S△ABC﹣S扇形=;(2)当C,A,P三点共线时,CP的长最大,∵AP=,AB=3,∴BP=.【点评】本题考查了切线的性质,勾股定理,扇形面积的计算等,掌握综合知识是解题的关键.24.(12分)某快递企业为提高工作效率,拟购买A、B两种型号智能机器人进行快递分拣.相关信息如下:信息一A型机器人台数B型机器人台数总费用(单位:万元)1326032360信息二A型机器人每台每天可分拣快递22万件;B型机器人每台每天可分拣快递18万件.(1)求A、B两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A、B两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?【分析】(1)设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,根据题意列出方程组,计算结果;(2)设购买A型智能机器人a台,则购买B型智能机器人(10﹣a)台,先求出a的取值范围,再得出每天分拣快递的件数=22a+18(10﹣a)=4a+180,当a取得最大值时,每天分拣快递的件数最多.【解答】解:(1)设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,∴,∴,答:A型智能机器人的单价为80万元,B型智能机器人的单价为60万元;(2)设购买A型智能机器人a台,则购买B型智能机器人(10﹣a)台,∴80a+60(10﹣a)≤700,∴a≤5,∵每天分拣快递的件数=22a+18(10﹣a)=4a+180,∴当a=5时,每天分拣快递的件数最多为200万件,∴选择购买A型智能机器人5台,购买B型智能机器人5台.【点评】本题考查了一元一次不等式的应用,二元一次方程组的应用,掌握二元一次方程组,一元一次不等式的应用是解题的关键.25.(13分)已知函数y=(x﹣a)2+(x﹣b)2(a,b为常数).设自变量x取x0时,y取得最小值.(1)若a=﹣1,b=3,求x0的值;(2)在平面直角坐标系xOy中,点P(a,b)在双曲线y=﹣上,且x0=.求点P到y轴的距离;(3)当a2﹣2a﹣2b+3=0,且1≤x0<3时,分析并确定整数a的个数.【分析】(1)利用求抛物线对称轴公式即可求得答案;(2)根据题意得b=﹣,代入y=(x﹣a)2+(x﹣b)2,再根据抛物线对称轴公式建立方程求解即可;(3)由题意得b=,代入y=(x﹣a)2+(x﹣b)2,用含a的代数式表示x0,再根据题意列不等式组求解即可.【解答】解:(1)若a=﹣1,b=3,则y=(x+1)2+(x﹣3)2=2x2﹣4x+10,∵当x=﹣=1时,y取得最小值,∴x0=1;(2)∵点P(a,b)在双曲线y=﹣上,∴b=﹣,∴y=(x﹣a)2+(x+)2=2x2﹣(2a﹣)x+a2+,∵x0=﹣=,∴a1=2,a2=﹣1,当a=2时,点P到y轴的距离为2;当a=﹣1时,点P到y轴的距离1;综上所述,点P到y轴的距离为2或1;(3)∵a2﹣2a﹣2b+3=0,∴b=,由题意得:x0==,∵1≤x0<3,∴1≤<3,整理得:1≤a2<9,∴﹣3<a≤﹣1或1≤a<3,∵a为整数,∴a=﹣2或﹣1或1或2,共4个.【点评】本题是函数综合题,考查了二次函数的性质,反比例函数性质,解不等式组等,理解题意,熟练运用二次函数的性质是解题关键.26.(13分)综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动.【特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线AD的长∠BAD的度数腰长两腰之和两腰之积图①160°24

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论