版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
备战2024年高考数学易错题(新高考专用)专题03不等式(3大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)含答案专题03不等式易错点一:忽略不等式变号的前提条件(等式与不等式性质的应用)1.比较大小基本方法关系方法做差法与0比较做商法与1比较或或2..等式的性质(1)基本性质性质性质内容对称性传递性可加性可乘性同向可加性同向同正可乘性可乘方性类型1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.类型2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.易错提醒:(1)一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.(2)不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.例.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件变式1.已知,则下列关系式正确的是(
)A.若,则 B.若,则C.若且,则 D.若,则变式2.对于实数,,,下列结论中正确的是(
)A.若,则 B.若,则C.若,则 D.若,,则变式3.已知均为实数,下列不等式恒成立的是(
)A.若,则B.若,则C.若,则D.若,则1.已知实数,,,若,则下列不等式成立的是(
)A. B.C. D.2.若,则下列结论不正确的是(
)A. B.C. D.3.已知,,则下列不等式一定成立的是(
)A. B.C. D.4.若,则下列不等式中正确的是(
)A.B.C.D.5.若、、,且,则下列不等式一定成立的是(
)A. B. C. D.6.下列命题中正确的是(
)A.若,则 B.若,,则C.若,,则 D.若,,则7.设,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知,,:,:,则是的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.下列四个选项能推出的有(
)A. B.C. D.10.已知,则(
)A. B.C. D.11.已知实数a,b满足,则下列不等式一定正确的是(
)A. B.C. D.易错点二:遗漏一元二次方法求解的约束条件(有关一元二次不等式求解集问题)解一元二次不等式的步骤:第一步:将二次项系数化为正数;第二步:解相应的一元二次方程;第三步:根据一元二次方程的根,结合不等号的方向画图;第四步:写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.对含参的不等式,应对参数进行分类讨论具体模型解题方案:1、已知关于的不等式的解集为(其中),解关于的不等式.由的解集为,得:的解集为,即关于的不等式的解集为.已知关于的不等式的解集为,解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为.2、已知关于的不等式的解集为(其中),解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为.3.已知关于的不等式的解集为,解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为,以此类推.4、已知关于的一元二次不等式的解集为,则一定满足;5、已知关于的一元二次不等式的解集为,则一定满足;6、已知关于的一元二次不等式的解集为,则一定满足;7、已知关于的一元二次不等式的解集为,则一定满足.易错提醒:一元二次不等式一元二次不等式,其中,是方程的两个根,且(1)当时,二次函数图象开口向上.(2)=1\*GB3①若,解集为.=2\*GB3②若,解集为.=3\*GB3③若,解集为.(2)当时,二次函数图象开口向下.=1\*GB3①若,解集为=2\*GB3②若,解集为。例.若对于任意实数x,不等式恒成立,则实数a可能是(
)A. B.0 C. D.1变式1.已知关于x的不等式的解集为,则下列选项中正确的是(
)A.B.不等式的解集是C.D.不等式的解集为变式2.已知命题:关于的不等式的解集为R,那么命题的一个必要不充分条件是(
)A. B.C. D.变式3.下列叙述不正确的是(
)A.的解是B.“”是“”的充要条件C.已知,则“”是“”的必要不充分条件D.函数的最小值是1.已知的解集是,则下列说法正确的是(
)A.不等式的解集是B.的最小值是C.若有解,则m的取值范围是或D.当时,,的值域是,则的取值范围是2.已知集合,或,,则(
)A. B.C. D.3.已知集合,,则(
)A. B.C. D.4.已知函数,若不等式在上恒成立,则满足要求的有序数对有(
)A.0个 B.1个 C.2个 D.无数个5.设集合,,且,则(
)A.6 B.4 C. D.6.若两个正实数x,y满足,且不等式有解,则实数m的取值范围是(
)A. B.或C. D.或7.“不等式恒成立”的一个充分不必要条件是(
)A. B. C. D.8.已知当时,不等式:恒成立,则实数的取值范围是(
)A. B. C. D.9.已知集合中恰有两个元素,则a的取值范围为(
)A. B. C. D.10.不等式的解集为(
)A. B.C. D.11.若不等式的解集是,函数的对称轴是(
)A. B. C. D.易错点三:遗漏连续使用基本不等式前提条件吻合性(基本不等式最值问题)1.几个重要的不等式(1)(2)基本不等式:如果,则(当且仅当“”时取“”).特例:(同号).(3)其他变形:①(沟通两和与两平方和的不等关系式)②(沟通两积与两平方和的不等关系式)③(沟通两积与两和的不等关系式)④重要不等式串:即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).2.均值定理已知.(1)如果(定值),则(当且仅当“”时取“=”).即“和为定值,积有最大值”.(2)如果(定值),则(当且仅当“”时取“=”).即积为定值,和有最小值”.3.常见求最值模型模型一:,当且仅当时等号成立;模型二:,当且仅当时等号成立;模型三:,当且仅当时等号成立;模型四:,当且仅当时等号成立.易错提醒:1.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法(2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量.(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:①若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)②若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围.注意:形如的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.2.通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标;(3)拆项、添项应注意检验利用基本不等式的前提.3.利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.例.函数(且)的图象恒过定点,若且,,则的最小值为(
)A.9 B.8 C. D.变式1.已知,则的最小值为(
)A.4 B.6 C. D.变式2.已知命题p:在中,若,则;q:若,则,则下列命题为真命题的是(
)A. B. C. D.变式3.设,,,则有(
)A.最小值3 B.最大值3C.最小值 D.最大值1.已知,点在线段上(不包括端点),向量,的最小值为(
)A. B.C. D.2.已知正数,满足,则(
)A.的最小值为3 B.的最小值为C.的最小值为3 D.的最大值为3.已知,若,则(
)A. B.C.的最小值为8 D.的最大值为4.任取多组正数,通过大量计算得出结论:,当且仅当时,等号成立.若,根据上述结论判断的值可能是(
)A. B. C.5 D.35.已知,则下列结论正确的是(
)A.的最小值为16 B.的最小值为9C.的最大值为1 D.的最小值为6.已知正数a,b满足,则(
)A. B. C. D.7.设正实数满足,则下列说法正确的是(
)A.的最小值为6 B.的最大值为C.的最小值为2 D.的最小值为8.已知,,且,则不正确的是(
)A. B. C. D.9.若实数,,满足,以下选项中正确的有(
)A.的最大值为 B.的最小值为C.的最小值为5 D.的最小值为10.已知,且,则下列选项正确的是(
)A. B..C.的最大值为 D.11.设且,则的最小值是.
专题03不等式易错点一:忽略不等式变号的前提条件(等式与不等式性质的应用)1.比较大小基本方法关系方法做差法与0比较做商法与1比较或或2..等式的性质(1)基本性质性质性质内容对称性传递性可加性可乘性同向可加性同向同正可乘性可乘方性类型1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.类型2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.易错提醒:(1)一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.(2)不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.例.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A【详解】由,则成立,充分性成立;由,若,显然不成立,必要性不成立;所以“”是“”的充分不必要条件.故选:A变式1.已知,则下列关系式正确的是(
)A.若,则 B.若,则C.若且,则 D.若,则【答案】A【详解】A选项,因为,故在上单调递增,因为,所以,A正确;B选项,因为,所以,因为,所以,B错误;C选项,若,则在R上单调递减,因为,所以,C错误;D选项,因为,所以,因为,则,故,D错误.故选:A变式2.对于实数,,,下列结论中正确的是(
)A.若,则 B.若,则C.若,则 D.若,,则【答案】D【详解】解:对于A:时,不成立,A错误;对于B:若,则,B错误;对于C:令,代入不成立,C错误;对于D:若,,则,,则,D正确;故选:D.变式3.已知均为实数,下列不等式恒成立的是(
)A.若,则B.若,则C.若,则D.若,则【答案】C【详解】A,当时,,A错误;B,当时,没意义,B错误;C,由,知,所以,C正确;D,当时,不成立,D错误.故选:C1.已知实数,,,若,则下列不等式成立的是(
)A. B.C. D.【答案】C【详解】选项A:因为,取,则,故A错误;选项B:因为,与已知条件矛盾,故B不正确;选项C:因为所以,故C正确;选项D:当时,,故D不正确;故选:C.2.若,则下列结论不正确的是(
)A. B.C. D.【答案】D【详解】对于A,因为,所以,所以,即,所以A正确,对于B,因为,所以,所以B正确,对于C,因为在上递增,,所以,所以C正确,对于D,若,则,则,所以D错误,故选:D3.已知,,则下列不等式一定成立的是(
)A. B.C. D.【答案】C【详解】对于A,令,显然有,,而,A错误;对于B,由,知,令,显然有,而,B错误;对于C,由,,得,因此,C正确;对于D,若,令,有,而,D错误.故选:C4.若,则下列不等式中正确的是(
)A.B.C.D.【答案】D【详解】因为,所以,则.所以即,AB错误.因为,所以,则,C错误.因为,所以则,D正确.故选:D5.若、、,且,则下列不等式一定成立的是(
)A. B. C. D.【答案】B【详解】因为、、,且,则,,由不等式的基本性质可得,A错;,B对;当时,,C错;,D错.故选:B.6.下列命题中正确的是(
)A.若,则 B.若,,则C.若,,则 D.若,,则【答案】D【详解】A选项,当时,,故A错误;B选项,当,,,时,,,故B错误;C选项,当,,,时,,故C错误;D选项,若,,则,即,故D正确.故选:D.7.设,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【详解】由,可得,则是的必要不充分条件.故选:B8.已知,,:,:,则是的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【详解】解:因为,,:即,即,则,而:,所以,是的充分不必要条件,故选:.9.下列四个选项能推出的有(
)A. B.C. D.【答案】ACD【详解】,对于A,当时,,所以,所以A正确,对于B,当时,,所以,所以B错误,对于C,当时,,所以,所以C正确,对于D,当时,,所以,所以D正确,故选:ACD.10.已知,则(
)A. B.C. D.【答案】BCD【详解】因为,所以,故,故A错误;,故B正确;,故C正确;,故D正确.故选:BCD.11.已知实数a,b满足,则下列不等式一定正确的是(
)A. B.C. D.【答案】AC【详解】选项A,由得,∴,故A正确;选项B,取,,可得,,不满足,故B错误;选项C,,∵,所以,故,∴,故C正确;选项D,设函数,,则,当时,,单调递减,故时,,即,故,故D错误.故选:AC易错点二:遗漏一元二次方法求解的约束条件(有关一元二次不等式求解集问题)解一元二次不等式的步骤:第一步:将二次项系数化为正数;第二步:解相应的一元二次方程;第三步:根据一元二次方程的根,结合不等号的方向画图;第四步:写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.对含参的不等式,应对参数进行分类讨论具体模型解题方案:1、已知关于的不等式的解集为(其中),解关于的不等式.由的解集为,得:的解集为,即关于的不等式的解集为.已知关于的不等式的解集为,解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为.2、已知关于的不等式的解集为(其中),解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为.3.已知关于的不等式的解集为,解关于的不等式.由的解集为,得:的解集为即关于的不等式的解集为,以此类推.4、已知关于的一元二次不等式的解集为,则一定满足;5、已知关于的一元二次不等式的解集为,则一定满足;6、已知关于的一元二次不等式的解集为,则一定满足;7、已知关于的一元二次不等式的解集为,则一定满足.易错提醒:一元二次不等式一元二次不等式,其中,是方程的两个根,且(1)当时,二次函数图象开口向上.(2)=1\*GB3①若,解集为.=2\*GB3②若,解集为.=3\*GB3③若,解集为.(2)当时,二次函数图象开口向下.=1\*GB3①若,解集为=2\*GB3②若,解集为。例.若对于任意实数x,不等式恒成立,则实数a可能是(
)A. B.0 C. D.1【答案】ABD【详解】当时,不等式为恒成立,故满足题意;当时,要满足,而,所以解得;综上,实数a的取值范围是;所以对比选项得,实数a可能是,0,1.故选:ABD.变式1.已知关于x的不等式的解集为,则下列选项中正确的是(
)A.B.不等式的解集是C.D.不等式的解集为【答案】BD【详解】不等式的解集为,则是方程的根,且,则,即,A错误;不等式化为,解得,即不等式的解集是,B正确;,C错误;不等式化为,即,解得或,所以不等式的解集为,D正确.故选:BD变式2.已知命题:关于的不等式的解集为R,那么命题的一个必要不充分条件是(
)A. B.C. D.【答案】CD【详解】命题p:关于x的不等式的解集为R,则,解得又,,故选:CD.变式3.下列叙述不正确的是(
)A.的解是B.“”是“”的充要条件C.已知,则“”是“”的必要不充分条件D.函数的最小值是【答案】AD【详解】选项A:的解是或,故A不正确;选项B:由得,恒成立则或,解得,所以“”是“”的充要条件,故B正确;选项C:由得,解得,所以“”是“”的必要不充分条件,故C正确;选项D:由均值不等式得,当且仅当时等号成立,此时无实数解,所以的最小值大于,故D不正确;故选:AD1.已知的解集是,则下列说法正确的是(
)A.不等式的解集是B.的最小值是C.若有解,则m的取值范围是或D.当时,,的值域是,则的取值范围是【答案】ABD【详解】因的解集是,则是关于x的方程的二根,且,于是得,即,对于A,不等式化为:,解得,A正确;对于B,,,当且仅当,即时取“=”,B正确;对于C,,令,则在上单调递增,即有,因有解,则,解得或,C不正确;对于D,当时,,则,,依题意,,由得,或,因在上的最小值为-3,从而得或,因此,D正确.故选:ABD2.已知集合,或,,则(
)A. B.C. D.【答案】A【详解】由或,所以.故选:A3.已知集合,,则(
)A. B.C. D.【答案】C【详解】由,解得,所以,因为,得,所以,故.故选:C.4.已知函数,若不等式在上恒成立,则满足要求的有序数对有(
)A.0个 B.1个 C.2个 D.无数个【答案】B【详解】由题意若不等式在上恒成立,则必须满足,即,由,两式相加得,再由,两式相加得,结合(4),(5)两式可知,代入不等式组得,解得,经检验,当,时,,有,,满足在上恒成立,综上所述:满足要求的有序数对为:,共一个.故选:B.5.设集合,,且,则(
)A.6 B.4 C. D.【答案】D【详解】,,∵,∴,∴,故选:D.6.若两个正实数x,y满足,且不等式有解,则实数m的取值范围是(
)A. B.或C. D.或【答案】D【详解】根据题意,两个正实数x,y满足,变形可得,即,则,当且仅当时等号成立,则的最小值为2,若不等式有解,则,可得或,即实数m的取值范围是.故选:D.7.“不等式恒成立”的一个充分不必要条件是(
)A. B. C. D.【答案】D【详解】当时,恒成立,当时,则,解得,综上所述,不等式恒成立时,,所以选项中“不等式恒成立”的一个充分不必要条件是.故选:D.8.已知当时,不等式:恒成立,则实数的取值范围是(
)A. B. C. D.【答案】C【详解】当时,由得,因,故,当且仅当即时等号成立,因当时,恒成立,得,故选:C9.已知集合中恰有两个元素,则a的取值范围为(
)A. B. C. D.【答案】B【详解】由集合中恰有两个元素,得,解得.故选:B.10.不等式的解集为(
)A. B.C. D.【答案】B【详解】易知方程可化为,方程的两根为;所以不等式的解集为.故选:B.11.若不等式的解集是,函数的对称轴是(
)A. B. C. D.【答案】A【详解】解:∵不等式的解集是,∴和是方程的两个根,∴,∴,∴函数的对称轴是.故选:A.易错点三:遗漏连续使用基本不等式前提条件吻合性(基本不等式最值问题)1.几个重要的不等式(1)(2)基本不等式:如果,则(当且仅当“”时取“”).特例:(同号).(3)其他变形:①(沟通两和与两平方和的不等关系式)②(沟通两积与两平方和的不等关系式)③(沟通两积与两和的不等关系式)④重要不等式串:即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).2.均值定理已知.(1)如果(定值),则(当且仅当“”时取“=”).即“和为定值,积有最大值”.(2)如果(定值),则(当且仅当“”时取“=”).即积为定值,和有最小值”.3.常见求最值模型模型一:,当且仅当时等号成立;模型二:,当且仅当时等号成立;模型三:,当且仅当时等号成立;模型四:,当且仅当时等号成立.易错提醒:1.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法(2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量.(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:①若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)②若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围.注意:形如的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.2.通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标;(3)拆项、添项应注意检验利用基本不等式的前提.3.利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.例.函数(且)的图象恒过定点,若且,,则的最小值为(
)A.9 B.8 C. D.【答案】B【详解】函数(且)的图象恒过定点,所以,,,当且仅当,即等号成立故选:B.变式1.已知,则的最小值为(
)A.4 B.6 C. D.【答案】D【详解】由,,即,易知,所以,当且仅当时等号成立,此时,所以的最小值为.故选:D变式2.已知命题p:在中,若,则;q:若,则,则下列命题为真命题的是(
)A. B. C. D.【答案】A【详解】命题p:在中,若,由正弦定理得,所以,为真命题,当,对于,当且仅当时等号成立,所以命题q:若,则,为真命题,所以为真命题,假命题,假命题,假命题,故选:A.变式3.设,,,则有(
)A.最小值3 B.最大值3C.最小值 D.最大值【答案】B【详解】,,故,故,当且仅当时成立,AD错误,B正确;当时,,C错误.故选:B.1.已知,点在线段上(不包括端点),向量,的最小值为(
)A. B.C. D.【答案】C【详解】,点在线段上(不包括端点),故存在,使得,即,即,因为向量,所以,可得,,,由基本不等式得,当且仅当,即时等号成立.故选:C.2.已知正数,满足,则(
)A.的最小值为3 B.的最小值为C.的最小值为3 D.的最大值为【答案】ABD【详解】对于A:由,当且仅当时等号成立,故A正确;对于B:由得,,当且仅当时取等号,所以,当且仅当时取等号,故B正确;对于C:因为,当且仅当时取等号,故C错误;对于D:由,当且仅当,即时等号成立,故D正确.故选:ABD.3.已知,若,则(
)A. B.C.的最小值为8 D.的最大值为【答案】ABC【详解】对于A和B中,因为且,可得且,即,所以,且,,所以A、B正确;对于C中,由,当且仅当,且,即,时,取“”号,所以C正确;对于D中,由,即,当且仅当,且,即,时,取“”号,所以D错误.故选:ABC.4.任取多组正数,通过大量计算得出结论:,当且仅当时,等号成立.若,根据上述结论判断的值可能是(
)A. B. C.5 D.3【答案】BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售业务员个人年终工作总结
- 晚会年会闭幕词模板(3篇)
- 规章制度学习心得范文
- 数学评课稿范文(34篇)
- 幼儿园卫生保健工作总结14篇
- 解除安装合同协议书(3篇)
- 新教材高考地理二轮复习三10个长效热点综合专项训练热点6“一带一路”建设含答案
- 湖北省荆州市石首市2024-2025学年五年级上学期11月期中道德与法治试题
- 广东省云浮市第一中学2024-2025学年七年级上学期11月期中生物学试题(含答案)
- 北京市2024-2025学年高三上学期期中物理试题(含答案)
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 注塑车间平面规划图OK
- 商户洽谈记录表
- 镇卫生院绩效考核方案
- 9.2+积极投身创新实践(高效教案)-【中职专用】中职思想政治《哲学与人生》(高教版2023基础模块)
- 【高中语文】《逻辑的力量》课件+统编版++选择性必修上册
- 项目物资管理员培训交底总结
- 习近平总书记关于教育的重要论述研究(安庆师范大学版)学习通超星课后章节答案期末考试题库2023年
- 法院诉讼指定监护人申请书
- 类风湿性关节炎综述4572
- 机关事业单位公文写作培训-课件
评论
0/150
提交评论