2025届浙江省绍兴市阳明中学数学八年级第一学期期末联考试题含解析_第1页
2025届浙江省绍兴市阳明中学数学八年级第一学期期末联考试题含解析_第2页
2025届浙江省绍兴市阳明中学数学八年级第一学期期末联考试题含解析_第3页
2025届浙江省绍兴市阳明中学数学八年级第一学期期末联考试题含解析_第4页
2025届浙江省绍兴市阳明中学数学八年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省绍兴市阳明中学数学八年级第一学期期末联考试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知实数a满足,那么的值是()A.2005 B.2006 C.2007 D.20082.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°3.小颖和小亮在做一道关于整数减法的作业题,小亮将被减数后面多加了一个0,得到的差为750;小颖将减数后面多加了一个0,得到的差为-420,则这道减法题的正确结果为()A.-30 B.-20 C.20 D.304.武侯区初中数学分享学习课堂改革正在积极推进,在一次数学测试中,某班的一个共学小组每位同学的成绩(单位:分;满分100分)分别是:92,90,94,88,记这组数据的方差为.将上面这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣2,记这组新数据的方差为,此时有=,则的值为()A.1 B.2 C.4 D.55.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个 B.2个 C.3个 D.4个6.下列运算结果正确的是()A. B.C. D.7.如图,在中,,,求证:.当用反证法证明时,第一步应假设()A. B. C. D.8.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是()A.①②③④ B.②③④⑤ C.①③④⑤ D.①②③⑤9.如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为()A.1 B. C.2 D.10.若,则m,n的值分别为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是4,则图中阴影部分图形的面积为__________.12.用“如果…,那么…”的形式,写出“对顶角相等”的逆命题:_____________________________.13.已知和一点,,,,则______.14.计算:______;15.如图,在△ABC和△DEF中,∠B=40°,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S△ABC_____S△DEF.(填“>”或“=”或“<”).16.点和点关于轴对称,则的值是______.17.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.18.若分式的值为0,则x的值为___________.三、解答题(共66分)19.(10分)如图,在中,,请用尺规在上作一点,使得直线平分的面积.20.(6分)如图,在△ABC中,AB=AC,∠A=36°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求与作法);(2)在(1)的条件下,求∠BDC的度数.21.(6分)鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.(1)求鼎丰超市11月份这种保温杯的售价是多少元?(2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?22.(8分)已知:如图,,那么成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.解:成立,理由如下:(已知)①(同旁内角互补,两条直线平行)(②)又(已知),(等量代换)(③)(④).23.(8分)为了解学生课余活动情况.晨光中学对参加绘画,书法,舞蹈,乐器这四个课外兴趣小组的人员分布情况进行调查.并报据收集的数据绘制了两幅不完整的统计阁.请根据图中提供的信息.解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数.(3)如果该校共有300名学生参加这4个课外兴趣小组,而每位教师最多只能辅导本组的20名学生,估计乐器兴趣小组至少需要准备多少名教师?24.(8分)甲、乙两个工程队完成某项工程,首先是甲队单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系.(1)求甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式;(2)求实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少多少天?25.(10分)请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为;(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P);(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论.26.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,慢车的速度是快车速度的,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)甲、乙两地之间的距离为km;D点的坐标为;(2)求线段BC的函数关系式,并写出自变量x的取值范围;(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?

参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据二次根式有意义的条件求出a的取值范围,然后去绝对值符号化简,再两边平方求出的值.【详解】∵a-1≥0,∴a≥1,∴可化为,∴,∴a-1=20062,∴=1.故选C.【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a的取值范围是解答本题的关键.2、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.3、D【分析】根据题意,设被减数为x,减数为y,则,然后根据二元一次方程组的解法,求出x、y的值,判断出这道减法题的算式是多少即可.【详解】解:设被减数为x,减数为y,则,解得,∴这道减法题的正确结果应该为:80-50=1.故选D.【点睛】此题主要考查了有理数的减法运算,以及二元一次方程组的求解方法,要熟练掌握.4、D【分析】根据方差公式计算出的值,再根据=,即可得出的值.【详解】=(2+0+4﹣2)÷4=1,,∵=,∴的值为5,故选:D.【点睛】本题考查了方差的实际应用,掌握方差的计算公式是解题的关键.5、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6、C【分析】分别根据完全平方公式、合并同类项的法则、单项式乘多项式以及同底数幂的除法法则逐一判断即可.【详解】A.,故本选项错误;B.,故本选项错误;C.,故本选项正确;D.,故本选项错误;故选C.【点睛】本题主要考察整式的加减、完全平方公式和同底数幂的除法,解题关键是熟练掌握计算法则.7、B【分析】根据反证法的概念,即可得到答案.【详解】用反证法证明时,第一步应假设命题的结论不成立,即:.故选B.【点睛】本题主要考查反证法,掌握用反证法证明时,第一步应假设命题的结论不成立,是解题的关键.8、D【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③根据②△CQB≌△CPA(ASA),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确,∵△ACD≌△BCE,∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE②正确,∵△CQB≌△CPA,∴AP=BQ③正确,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确.故选:D.9、B【解析】试题分析:由Rt△ABC中,BC=3,AB=5,利用勾股定理,可求得AC的长,由折叠的性质,可得CD的长,然后设DE=x,由勾股定理,即可列方程求得结果.∵Rt△ABC中,BC=3,AB=5,∴由折叠的性质可得:AB=BD=5,AE=DE,∴CD=BD-BC=2,设DE=x,则AE=x,∴CE=AC-AE=4-x,∵在Rt△CDE中,DE2=CD2+BCE2,∴x2=22+(4-x)2,解得:,∴.故选B.考点:此题主要考查了图形的翻折变换,勾股定理点评:解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.10、C【分析】先根据多项式乘以多项式的法则计算,再根据多项式相等的条件即可求出m、n的值.【详解】∵,

∵,

∴,

∴,.

故选:C.【点睛】本题主要考查了多项式乘以多项式的法则:.注意不要漏项,漏字母,有同类项的合并同类项.二、填空题(每小题3分,共24分)11、1【分析】由平移的性质结合已知条件易得,四边形ACFD是平行四边形,且CF=AD=4,这样结合∠B=90°,AB=10即可求得阴影部分的面积了.【详解】∵△DEF是由△ABC沿BC方向平移4个单位长度得到的,∴AD∥CF,且AD=CF=4,∴四边形ACFD是平行四边形,∵∠B=90°,AB=10,∴S平行四边形ACFD=CF·AB=4×10=1.故答案为:1.【点睛】熟悉“平移的性质,并能结合已知条件得到四边形ACFD是平行四边形,CF=4”是解答本题的关键.12、如果两个角相等,那么这两个角是对顶角.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式,再利用把一个命题的题设和结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,

∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶角”.

故答案为:如果两个角相等,那么这两个角是对顶角.【点睛】本题考查了命题的条件和结论的叙述以及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13、40或80【分析】分两种情形:当点O在△ABC内部时或外部时分别求解.【详解】如图,当点O在△ABC内部时,

∵OA=OB=OC,,,

∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,

∴∠AOC=∠1+∠2=∠OAB+∠OBA+∠OBC+∠OCB=100°,∴∠OCA==40°;

如图,当点O在△ABC外部时,

∵OA=OB=OC,,,

∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,

∴∠AOC=∠DOC-∠DOA=∠OBC+∠OCB-(∠OAB+∠OBA),∴∠OCA==80°.故答案为:40或80.【点睛】本题考查了等腰三角形的性质,三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题.14、-4【分析】先把拆解成,再进行同指数幂运算即可.【详解】原式=故填:-4.【点睛】本题考查幂的运算:当指数相同的数相乘,指数不变数字相乘.采用简便方法计算是快速计算的关键.15、=【分析】分别表示出两个三角形的面积,根据面积得结论.【详解】接:过点D作DH⊥EF,交FE的延长线于点H,∵∠DEF=140°,∴∠DEH=40°.∴DH=sin∠DEH×DE=8×sin40°,∴S△DEF=EF×DH=20×sin40°过点A作AG⊥BC,垂足为G.∵AG=sin∠B×AB=5×sin40°,∴S△ABC=BC×AG=20×sin40°∴∴S△DEF=S△ABC故答案为:=【点睛】本题考查了锐角三角函数和三角形的面积求法.解决本题的关键是能够用正弦函数表示出三角形的高.16、3【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【详解】解:∵点A和点B关于y轴对称,∴可得方程组,解得:,∴a-b=3,故答案为:3.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a,b是解题关键.17、8【详解】解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.18、-3【分析】由分式的值为0,则分子为0,分母不为0,可得答案.【详解】因为:分式的值为0所以:解得:故答案为【点睛】本题考查的是分式的值为0的条件,即分子为0,分母不为0,熟知条件是关键.三、解答题(共66分)19、见解析【分析】首先若使直线平分的面积,即作CB的中垂线,分别以线段CB的两个端点C,B为圆心,以大于CB的一半长为半径作圆,两圆交于两点,连接这两点,与CB的交点就是线段CB的中点,即为点D.【详解】根据题意,得CD=BD,即作CB的中垂线,如图所示:【点睛】此题主要考查直角三角形和中垂线的综合应用,熟练掌握,即可解题.20、(1)见解析;(2)72°【分析】(1)直接利用角平分线的作法得出BD;(2)利用等腰三角形的性质以及角平分线的性质分析得出答案.【详解】(1)如图所示:BD即为所求;(2)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠ABC=36°,∴∠BDC=∠A+∠ABD=72°.【点睛】此题主要考查角平分线的作图与角度求解,解题的关键是熟知等腰三角形的性质.21、(1)18;(2)630【分析】(1)由题意设11月份这种保温杯的售价是x元,依题意列出方程并解出方程即可;(2)根据题意设这种保温杯的售价为y元,并列方程求解进而求出鼎丰超市12月份销售这种保温杯的利润.【详解】解:(1)设11月份这种保温杯的售价是x元,依题意可列方程解得:x=18经检验,x=18是原方程的解,且符合题意答:一鼎丰超市11月份这种保温杯的售价是18元.(2)设这种保温杯的售价为y元,依题意可列方程解得:y=12(18×0.9﹣12)×(100+50)=630(元)答:12月份销售这种保温杯的利润是630元.【点睛】本题考查分式方程的应用以及一元一次方程的应用,解题的关键是找准等量关系,正确列出分式方程和正确列出一元一次方程求解.22、AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质和已知得出∠DCE=∠D,推出AD∥BE,根据平行线的性质推出即可.【详解】,∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了对平行线的性质和判定的应用,主要考查学生的推理能力.23、(1)200;(2)图详见解析,36°;(3)1.【分析】(1)绘画组的人数有90人,所占比例为41%,故总数=某项人数÷所占比例;(2)乐器组的人数=总人数﹣其它组人数;书法部分的圆心角的度数=所占比例×360°;(3)根据每组所需教师数=300×某组的比例÷20计算.【详解】解:(1)∵绘画组的人数有90人,所占比例为41%,∴总人数=90÷41%=200(人);(2)乐器组的人数=200﹣90﹣20﹣30=60人,画图(如下):书法部分的圆心角为:×360°=36°;(3)乐器需辅导教师:300×÷20=4.1≈1(名),答:乐器兴趣小组至少需要准备1名教师.【点睛】本题考查了条形统计图与扇形统计图的综合,灵活的将条形与扇形统计图中的数据相关联是解题的关键.24、(1)y=x-;(2)实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天【分析】(1)根据函数图象可以设出y与x的函数解析式,然后根据图象中的数据即可求得工作量y与天数x间的函数关系式;(2)将y=1代入(1)中的函数解析式,即可求得实际完成的天数,然后根据函数图象可以求得甲单独完成需要的天数,从而可以解答本题.【详解】(1)设甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式为:y=kx+b,,得,即甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式是y=x-;(2)令y=1,则1=x-,得x=22,甲队单独完成这项工程需要的天数为:1÷(÷10)=40(天),∵40-22=18,∴实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25、(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.【分析】(1)根据三角形内角和定理即可证明;

(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;

(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;

(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,

在△COD中,∠C+∠D+∠COD=180°,

∵∠AOB=∠COD,

∴∠A+∠B=∠C+∠D;

(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,

∴∠1=∠2,∠3=∠4,

由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;

(3)解:如图3,

∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4,

∴∠PAD=180°-∠2,∠PCD=180°-∠3,

∵∠P+(180°-∠1)=∠D+(180°-∠3),

∠P+∠1=∠B+∠4,

∴2∠P=∠B+∠D,

∴∠P=(∠B+∠D)=×(36°+16°)=26°;

故答案为:26°;

(4)由题意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论