




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省随州市广水市西北协作区数学八上期末学业水平测试模拟试题测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.估计5﹣的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间2.下列图形中,不一定是轴对称图形的是()A.正方形 B.等腰三角形 C.直角三角形 D.圆3.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等4.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.55.已知一个多边形的内角和是,则该多边形的边数为()A.4 B.6 C.8 D.106.以下列各组数据为边长作三角形,其中能组成直角三角形的是().A.3,5,3 B.4,6,8 C.7,24,25 D.6,12,137.葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,还有一手绝招,就是它绕树盘上升的路线,总是沿着最短路线一盘旋前进的.如图,如果树的周长为5cm,从点A绕一圈到B点,葛藤升高12cm,则它爬行路程是()A.5cm B.12cm C.17cm D.13cm8.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0) B.y值随着x值增大而减小C.它的图象经过第二象限 D.当x>1时,y>09.如图所示:已知两个正方形的面积,则字母A所代表的正方形的面积为()A.4 B.8 C.64 D.1610.如果三角形的一个内角等于其它两个内角的差,那么这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形二、填空题(每小题3分,共24分)11.图1是小慧在“天猫•双11”活动中购买的一张多档位可调节靠椅.档位调节示意图如图2所示,己知两支脚分米,分米,为上固定连接点,靠背分米.档位为Ⅰ档时,,档位为Ⅱ档时,.当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端向后靠的水平距离(即)为______分米.12.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.13.若mn=2,则m+3nm-n14.已知、满足方程组,则代数式______.15.计算=.16.五边形的外角和等于°.17.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛18.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.三、解答题(共66分)19.(10分)已知,与成反比例,与成正比例,且当x=1时,y=1;当x=1时,y=-1.求y关于x的函数解析式,并求其图像与y轴的交点坐标.20.(6分)如图,△ABC中,点D在AC边上,AE∥BC,连接ED并延长ED交BC于点F,若AD=CD,求证:ED=FD.21.(6分)我们知道,假分数可以化为整数与真分数的和的形式.例如:,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,⋯⋯这样的分式是假分式;像,,⋯⋯这样的分式是真分式.类似的,假分式也可以化为整数与真分式的和的形式.例如:;;或(1)分式是分式(填“真”或“假”)(2)将分式化为整式与真分式的和的形式;(3)如果分式的值为整数,求的整数值.22.(8分)沿面积为正方形边的方向剪出一个长方形,能否使剪出的长方形的长、宽之比为3:2,且面积为?23.(8分)阅读材料:要把多项式am+an+bm+bn因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(𝑎𝑚+𝑎𝑛)+(𝑏𝑚+𝑏𝑛)=a(𝑚+𝑛)+b(𝑚+𝑛)=(𝑎+𝑏)(𝑚+𝑛),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x2-y2+x-y(2)已知四个实数a、b、c、d同时满足a2+ac=12k,b2+bc=12k.c2+ac=24k,d2+ad=24k,且a≠b,c≠d,k≠0①求a+b+c的值;②请用含a的代数式分别表示b、c、d24.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;(2)若每块小长方形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.25.(10分)如图,在平面直角坐标系中,过点的直线与直线相交于点,动点在线段和射线上运动.(1)求直线的解析式.(2)求的面积.(3)是否存在点,使的面积是的面积的?若存在求出此时点的坐标;若不存在,说明理由.26.(10分)如图,在△ABC中,∠A>∠B.分别以点A、B为圆心,以大于的长为半径画弧,过两弧的交点的直线与AB,BC分别相交于点D,E,连接AE,若∠B=50°,求∠AEC的度数.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.2、C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C3、C【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.4、C【解析】过A点作x轴的垂线,垂足为E,将不规则四边形分割为两个直角三角形和一个直角梯形求其面积即可.【详解】解:过A点作x轴的垂线,垂足为E,直角坐标系中四边形的面积为:1×1÷2+1×2÷2+(1+2)×2÷2=0.1+1+3=4.1.故选:C.【点睛】本题主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法.5、B【分析】根据多边形内角和定理,由已知多边形内角和为,代入得一元一次方程,解一次方程即可得出答案.【详解】多边形内角和定理为,,解得,所以多边形的边数为6,故选:B【点睛】利用多边形内角和定理,可以得到关于边数的一次方程式,列方程时注意度数,解简单的一次方程即可.6、C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要满足勾股定理的逆定理即可.A、;B、;C、;D、.根据勾股定理7,24,25能组成直角三角形.故选C.考点:勾股定理的逆定理.7、D【分析】将立体图形转化为平面图形,利用勾股定理解决问题即可.【详解】解:如果树的周长为5cm,绕一圈升高12cm,则葛藤绕树爬行的最短路线为:=13厘米.故选:D【点睛】本题考查平面展开﹣最短问题,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8、D【解析】画函数的图象,选项A,点(1,0)代入函数,,错误.由图可知,B,C错误,D,正确.选D.9、C【解析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【详解】∵正方形PQED的面积等于1,∴PQ2=1.∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣1=2,则正方形QMNR的面积为2.故选C.【点睛】本题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是解答本题的关键.10、C【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【详解】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°
故这个三角形是直角三角形.
故选:C.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(每小题3分,共24分)11、1【分析】如图,作AN⊥BC,交PO于G点,延长GO,交DE于H,交D’F于M,根据等腰三角形的性质得到NC的长,故得到cos∠ABN的值,根据题意知GO∥BC,DO∥AB,可得到cos∠DOH=cos∠ABN,根据即可得到OH的长,又,可得∠D’OM=∠OAG,再求出cos∠OAG=即可求出OM,故可得到EF的长.【详解】如图,作AN⊥BC,交PO于G点,延长GO,交DE于H,交D’F于M,∵,,∴BN=CN=6,AN=∴cos∠ABN=,根据题意得GO∥BC,DO∥AB,∴∠DOH=∠APG=∠ABG∴cos∠DOH=cos∠ABN∴cos∠DOH==∴OH=6,由,∴∠AOG+∠D’OM=90°,又∠AOG+∠OAG=90°∴∠D’OM=∠OAG,∵cos∠OAG==∴cos∠D’OM==∴OM=8∴HM=1,则EF=1,故答案为:1.【点睛】此题主要考查解直角三角形,解题的关键是根据题意构造直角三角形,利用三角函数的定义进行求解.12、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),则本次捐款20元的有:80−(20+10+15)=35(人),故答案为35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.13、1.【解析】将m=2n代入原式中进行计算即可.【详解】解:由题意可得m=2n,则原式=2n+3n2n-n故答案为:1.【点睛】本题考查了分式的化简求值.14、-1【分析】先利用加减消元法解方程,,把①+②得到3x=6,解得x=2,然后把x=2代入①可求出y,最后把x、y的值都代入x-y中进行计算即可;【详解】解:,把①+②得:3x=6,解得x=2,把x=2代入①得2+y=5,解得y=3,∴方程组的解为,∴;故答案为:-1;【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.15、.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解:.16、360°.【解析】试题分析:五边形的外角和是360°.故答案为360°.考点:多边形内角与外角.17、15【分析】单循环制:每个班都要和其他5个班赛一场,共赛6×5=30场,由于两个班只赛一场,去掉重复计算的情况,实际只赛:30÷2=15场,据此解答.【详解】解:根据题意,得(61)×6÷2,=30÷2,=15(场),答:如果釆用淘汰制,需安排5场比赛;如果釆用单循环制,一共安排15场比赛.【点睛】本题考查了握手问题的实际应用,要注意去掉重复计算的情况,如果选手比较少可以用枚举法解答,如果个选手比较多可以用公式:单循环制:比赛场数=n(n-1)÷2;淘汰制:比赛场数=n-1解答.18、0.4【解析】根据数据2、3、3、4、x的平均数是3,先利用平均数的计算公式可求出x,然后利用方差的计算公式进行求解即可.【详解】∵数据2、3、3、4、x的平均数是3,∴,∴,∴,故答案为.【点睛】本题主要考查了平均数和方差的计算,解题的关键是熟练掌握平均数和方差的计算公式.三、解答题(共66分)19、;函数图像与y轴交点的坐标为(0,6)【分析】根据题意设出函数关系式,把时,y=1;当x=1时,y=1代入y与x间的函数关系式便可求出未知数的值,从而求出其解析式;再令,即可求出点的坐标.【详解】解:∵与成反比例,与成正比例,∴设,,其中都是非零常数又,所以当x=1时,y=1;当x=1时,y=-1.∴,解得∴令,得.∴函数图像与y轴交点的坐标为(0,6).【点睛】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1和反比例函数解析式的一般式y=(k≠0)中,特别注意不要忽略k≠0这个条件.20、见解析【分析】由平行可得内错角相等,再利用ASA即可判定△ADE≌△CDF,所以ED=FD.【详解】证明:∵AE∥BC∴∠EAD=∠C在△ADE和△CDF中,∴△ADE≌△CDF(ASA)∴ED=FD【点睛】本题考查全等三角形的判定和性质,比较简单,找到全等条件即可.21、(1)真;(2);(1)x=0或2或-1或1【分析】(1)根据新定义和分子、分母的次数即可判断;(2)根据例题的变形方法,即可得出结论;(1)先根据例题的变形方法,将原分式化为整式与真分式的和的形式,然后根据式子的特征即可得出结论.【详解】解:(1)∵分子8的次数为0,分母的次数为1∴分式是真分式,故答案为:真;(2)根据例题的变形方法:故答案为:;(1)∵分式的值为整数,∴也必须为整数∵x也为整数∴或解得:x=0或2或-1或1.【点睛】此题考查的是与分式有关的新定义类问题、整式次数的判定和分式的相关运算,根据新定义及例题的变形方法解决相关问题是解决此题的关键.22、不能使剪出的长方形纸片的长宽之比为3:1,且面积为48cm1.【分析】可设它的长为,则宽为,根据面积公式列出一元二次方程解答即可求出的值,再代入长宽的表达式,看是否符合条件即可.【详解】设长方形纸片的长为,则宽为,则,解得:,∵正方形面积为60cm1,∴边长为,长方形纸片的长为:1×3=6,∵,,∴,所以沿此面积为60cm1正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为3:1,且面积为48cm1.【点睛】本题考查了一元二次方程的应用以及算术平方根和正方形性质等知识,解题的关键是先求出所裁出的长方形纸片的长.23、(1)(𝑥−𝑦)(𝑥+𝑦+1);(2)①;②,,【分析】(1)将x2-y2分为一组,x-y分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知=12k,可得,将等号左边参照(1)因式分解,即可求解.②由a2+ac=12k,c2+ac=24k可得2(a2+ac)=c2+ac,即可得出c=2a,同理得出,【详解】(1)x2-y2+x-y=(x2-y2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①=12k∵∴②∵a2+ac=12k,c2+ac=24k2(a2+ac)=c2+ac∴2a2+ac-c2=0得(2a-c)(a+c)=0∵a2+ac=12k≠0即a(a+c)≠0∴c=2a,a2=4k∵b2+bc=12k∴b2+2ba=3a2则(𝑎−𝑏)(3𝑎+𝑏)=0∵a≠b∴同理可得d2+ad=24k,c2+ac=24kd2+ad=c2+ac(𝑑−𝑐)(𝑎+𝑑+𝑐)=0∵∴∴故答案为:;,,【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.24、(1)(m+2n)(2m+n)(2)42cm【解析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)求出m+n的值,然后根据图象由正方形的性质和长方形的性质即可得出结论;【详解】(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为(m+2n)(2m+n);(2)依题意得:2m2+2n2=58,mn=10,∴m2+n2=1.∴(m+n)2=m2+n2+2mn=49,∴m+n=7,∴图中所有裁剪线(虚线部分)长度之和为6m+6n=6(m+n)=6×7=42cm.【点睛】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抗菌药物合理使用
- 茶楼茶艺师培训与派遣合同
- 专业物流车间租赁与仓储管理合同
- 茶叶店加盟品牌售后服务合同
- 跨境电商平台临时运营专员项目执行条款
- 茶叶品牌授权与市场推广合作合同
- 成都市二手房买卖双方房屋权属变更与登记合同
- 出借合同审查与风险评估服务协议
- 研发中心场地租赁合同补充协议范本
- 智能玻璃门窗系统研发与推广合同
- 《纯电动汽车动力电池温度管理系统优化研究》
- 《吉他自学入门教程》课件
- 2024-2020年上海高考英语作文试题汇编 (解读及范文)
- 边坡复绿施工方案
- 消防安全例会制度与流程
- 2024年春季学期建筑构造#期末综合试卷-国开(XJ)-参考资料
- 吊车起重吊装专项施工方案
- 定制家具工装合同模板
- 气压传动课件 项目七任务二 H400型加工中心气动换刀系统
- 云南省普通高中学生综合素质评价方案
- 数学家华罗庚课件
评论
0/150
提交评论