版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市大兴区名校2025届数学八年级第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列文化体育活动的图案中,是轴对称图形的是()A. B.C. D.2.将一副三角板按如图放置,则下列结论①;②如果,则有;③如果,则有;④如果,必有,其中正确的有()A.①②③ B.①②④ C.③④ D.①②③④3.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.4.某射击运动员练习射击,5次成绩分别是:8、9、7、8、(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则;②若这5次成绩的中位数为8,则;③若这5次成绩的众数为8,则;④若这5次成绩的方差为8,则A.1个 B.2个 C.3个 D.4个5.下列命题是假命题的是()A.对顶角相等 B.同位角相等 C.同角的余角相等 D.三角形的三个外角和为360°6.等腰三角形的两边长是6cm和3cm,那么它的周长是A.9cm B.12cm C.12cm或15cm D.15cm7.下列数据:75,80,85,85,85,则这组数据的众数和中位数是()A.75,80 B.85,85 C.80,85 D.80,758.下列多项式中,能分解因式的是()A. B. C. D.9.如图,为内一点,平分,,,若,,则的长为()A.5 B.4 C.3 D.210.已知,则()A.4033 B.4035 C.4037 D.403911.如图,△ABC中,AB=AC,∠C=72°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.82° B.72° C.60° D.36°12.如图,直线,,,则的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.已知点P(3,a)关于y轴的对称点为(b,2),则a+b=_______.14.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;15.如图,在△ABC中,∠B=10°,ED垂直平分BC,ED=1.则CE的长为.16.如图,中,,将沿翻折后,点落在边上的点处.如果,那么的度数为_________.17.小明用计算一组数据的方差,那么=____.18.若式子有意义,则的取值范围____________.三、解答题(共78分)19.(8分)一辆汽车开往距离出发地240km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地,求前一小时的行驶速度.20.(8分)如图,在中,,,为的中点,、分别是、(或它们的延长线)上的动点,且.(1)当时,如图①,线段和线段的关系是:_________________;(2)当与不垂直时,如图②,(1)的结论还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)当、运动到、的延长线时,如图③,请直接写出、、之间的关系.21.(8分)已知:如图,点、、、在一条直线上,、两点在直线的同侧,,,.求证:.22.(10分)计算①②23.(10分)如图,在平面直角坐标系中,三个顶点的坐标分别是.(1)在图中画出关于轴对称的图形,并写出点C的对应点的坐标;(2)在图中轴上作出一点,使得的值最小(保留作图痕迹,不写作法)24.(10分)已知a,b分别为等腰三角形的两条边长,且a,b满足b=4++3,求此三角形的周长.25.(12分)先化简,再在1,2,3中选取一个适当的数代入求值.26.如图,在平行四边形中,分别为边的中点,是对角线,过点作交的延长线于点.(1)求证:.(2)若,①求证:四边形是菱形.②当时,求四边形的面积.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据轴对称图形的概念对各图形分析判断后即可求解.【详解】A、图形不是轴对称图形,B、图形不是轴对称图形,C、图形是轴对称图形,D、图形不是轴对称图形,故选:C.【点睛】本题主要考查了轴对称图形的判断,熟练掌握相关概念是解题关键.2、D【分析】根据∠1+∠2=∠3+∠2即可证得①;根据求出∠1与∠E的度数大小即可判断②;利用∠2求出∠3,与∠B的度数大小即可判断③;利用求出∠1,即可得到∠2的度数,即可判断④.【详解】∵∠1+∠2=∠3+∠2=90,∴∠1=∠3,故①正确;∵,∴∠E=60,∴∠1=∠E,∴AC∥DE,故②正确;∵,∴,∵,∴∠3=∠B,∴,故③正确;∵,∴∠CFE=∠C,∵∠CFE+∠E=∠C+∠1,∴∠1=∠E=,∴∠2=90-∠1=,故④正确,故选:D.【点睛】此题考查互余角的性质,平行线的判定及性质,熟练运用解题是关键.3、B【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.4、A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则,故正确;②若这5次成绩的中位数为8,则可以任意数,故错误;③若这5次成绩的众数为8,则只要不等于7或9即可,故错误;④若时,方差为,故错误.所以正确的只有1个故选:A.【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.5、B【分析】由题意根据对顶角的概念、同位角的定义、余角、三角形外角和的概念判断.【详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,则同位角相等是假命题;C、同角的余角相等,是真命题;D、三角形的三个外角和为360°,是真命题.故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉相关的性质定理.6、D【解析】试题分析:题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.考点:等腰三角形的性质;三角形三边关系.7、B【分析】众数是一组数据中出现次数最多的数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.【详解】解:此组数据中85出现了3次,出现次数最多,所以此组数据的众数是85;将此组数据按从小到大依次排列为:75,80,85,85,85,此组数据个数是奇数个,所以此组数据的中位数是85;故选:B.【点睛】本题为统计题,考查众数与中位数的意义,解题的关键是认真理解题意.8、D【分析】根据因式分解的各个方法逐一判断即可.【详解】解:A.不能因式分解,故本选项不符合题意;B.不能因式分解,故本选项不符合题意;C.不能因式分解,故本选项不符合题意;D.,能因式分解,故本选项符合题意.故选D.【点睛】此题考查的是因式分解,掌握因式分解的各个方法是解决此题的关键.9、A【分析】根据已知条件,延长BD与AC交于点F,可证明△BDC≌△FDC,根据全等三角形的性质得到BD=DF,再根据得AF=BF,即可AC.【详解】解:延长BD,与AC交于点F,∵∴∠BDC=∠FDC=90°∵平分,∴∠BCD=∠FCD在△BDC和△FDC中∴△BDC≌△FDC∴BD=FD=1BC=FC=3∵∴AF=BF∵,,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A【点睛】本题考查的是三角形的判定和性质,全等三角形的对应边相等,是求线段长的依据,本题的AC=AF+FC,AF,FC用已知线段来代替.10、C【分析】根据得出a的值,再对2a+3进行运算化简即可.【详解】解:∵∴∴∴故答案为:C.【点睛】本题考查了代数式的运算,解题的关键是对2a+3进行化简.11、B【分析】先根据AB=AC,∠C的度数,求出∠ABC的度数,再由垂直平分线的性质求出∠ABD的度数,再由三角形内角与外角的性质解答即可.【详解】解:∵AB=AC,∠C=72°,
∴∠ABC=∠C=72°,∴∠A=36°
∵DE垂直平分AB,
∴∠A=∠ABD=36°,
∴∠BDC=∠A+∠ABD=36°+36°=72°.
故选:B.【点睛】点评:本题考查的是线段垂直平分线的性质及三角形内角和定理、等腰三角形的性质,解答此题的关键是熟知线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.12、C【分析】根据平行线的性质,得,结合三角形内角和定理,即可得到答案.【详解】∵,∴,∵,∴=180°-32°-45°=103°,故选C.【点睛】本题主要考查平行线的性质定理以及三角形内角和定理,掌握两直线平行,同位角相等,是解题的关键.二、填空题(每题4分,共24分)13、-1【解析】∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=−3,∴a+b=2+(−3)=−1.故答案为−1.14、6cm【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,
∴∠C=∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠EAD,
在△ACD和△AED中,∴△ACD≌△AED(AAS),
∴AC=AE,CD=DE,
∴BD+DE=BD+CD=BC=AC=AE,
BD+DE+BE=AE+BE=AB=6,
所以,△DEB的周长为6cm.
故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.15、4【解析】试题分析:因为ED垂直平分BC,所以BE=CE,在Rt△BDE中,因为∠B=30°,ED=3,所以BE=4DE=4,所以CE=BE=4.考点:3.线段的垂直平分线的性质;4.直角三角形的性质.16、70°【分析】首先由折叠的性质,得出∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED,然后根据,得出∠AED=∠A′ED=55°,再由三角形内角和定理即可得解.【详解】由已知,得∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED∵∴∠AED=∠A′ED=(180°-∠A′EC)=(180°-70°)=55°又∵∴∠ADE=∠A′DE=180°-∠A-∠AED=180°-55°-55°=70°故答案为70°.【点睛】此题主要考查利用三角形翻折的性质求角的度数,熟练掌握,即可解题.17、1【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解.【详解】解:由题意可得,这组数据共10个数,且它们的平均数是3∴=10×3=1故答案为:1.【点睛】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=.18、且【分析】根据二次根式与分式有意义的条件解答即可.【详解】解:由题意得:,解得且.故答案为:且.【点睛】本题考查了二次根式与分式有意义的条件,属于基础题目,掌握解答的方法是关键.三、解答题(共78分)19、前一小时的行驶速度为80km/h.【分析】首先设前一小时的行驶速度是xkm/h,则一小时后的行驶速度是1.5xkm/h,根据题意可的等量关系:实际行驶时间+40min=原计划行驶时间,根据等量关系列出方程,再解即可.【详解】解:设前一小时的行驶速度是xkm/h,根据题意得:解得:x=80,经检验x=80是原分式方程的解,答:前一小时的行驶速度为80km/h.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.20、(1),;(2)成立,证明见解析;(3)【解析】(1)连接CO,证明△AOM≌△CON可证得OM=ON,∠CON=∠AOM=45°,再证明∠COM=45°即可证明出结论;(2)连接CO,证明可证得OM=ON,再证明即可得到结论;(3)同(2)得:△OCF≌△OBN,,得出S△OMN=S五边形OBNMC=S△CMN+S△OCB=S△CMN+S△ABC.【详解】(1)∵,,∴∠A=45°,∵,∴∠AOM=45°,连接CO,则有CO⊥AB,如图,∴∠COM=45°,∠BCO=45°,CO=AB∵为的中点,∴∴AO=CO在△AOM和△CON中∴△AOM≌△CON∴OM=ON,∠NOC=∠MOA=45°,∴∠NOC+∠COM=45°+45°=90°,即∴,(2)成立,证明:连接,,是中点,(三线合一)又,(3)连接CO,如图所示:同(2)得:△OCF≌△OBN,∠OCM=∠OBN=135°∴S△OMN=S五边形OBNMC,=S△CMN+S△OCB,=S△CMN+S△ABC,∴.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法,证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.21、见解析【分析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.【详解】∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF.【点睛】本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键.22、①;②【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式==;②原式==.【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.23、(1)见解析;(2)见解析【分析】(1)利用轴对称的性质找出A1、B1、C1关于y轴对称点,再依次连接即可;(2)作点C关于x轴的对称点C2,连接B1C2,与x轴交点即为P.【详解】解:(1)如图,△A1B1C1即为所作图形,其中C1的坐标为(-4,4);(2)如图点P即为所作点.【点睛】本题考查了作图—轴对称,最短路径问题,解题的关键在于利用轴对称的性质作出最短路径.24、10.【解析】试题分析:首先由b=4+结合二次根式的被开方数是非负数列出不等式组求得a的值,进一步求得b的值,再分a为腰和b为腰两种情况讨论计算即可.试题解析:∵b=4+,∴,解得:a=2,∴b=4,(1)当边长为4,2,2时,不符合实际情况,舍去;(2)当边长为4,4,2时,符合实际情况,∴4×2+2=10,∴此三角形的周长为10.点睛:解答本题有两个要点:(1)由根据二次根式的被开方数必须是非负数列出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游泳馆勘察技术标投标
- 环保工程招投标委托书模板
- 农药原料招投标专员操作指南
- 本溪市供热服务用户体验优化
- 亲子活动中心租赁
- 新能源汽车项目保函策略
- 旅游服务提升工程中心管理办法
- 老旧小区改造评估师招聘协议
- 医疗资源区二手房买卖范本
- 交通运输枢纽站房租赁合同
- 咯血的介入治疗
- 教师专业成长概述教师专业发展途径PPT培训课件
- 球磨机安装专项施工方案
- 阀门压力等级对照表优质资料
- GMP质量管理体系文件 中药材干燥SOP
- YY/T 0874-2013牙科学旋转器械试验方法
- GB/T 25217.10-2019冲击地压测定、监测与防治方法第10部分:煤层钻孔卸压防治方法
- GB/T 21010-2007土地利用现状分类
- 下库大坝混凝土温控措施(二次修改)
- 医药代表初级培训课程课件
- SAT长篇阅读练习题精选14篇(附答案)
评论
0/150
提交评论