2025届江苏省扬州市江都区城区数学八上期末联考试题含解析_第1页
2025届江苏省扬州市江都区城区数学八上期末联考试题含解析_第2页
2025届江苏省扬州市江都区城区数学八上期末联考试题含解析_第3页
2025届江苏省扬州市江都区城区数学八上期末联考试题含解析_第4页
2025届江苏省扬州市江都区城区数学八上期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省扬州市江都区城区数学八上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知△ABC的三边为a,b,c,下列条件能判定△ABC为直角三角形的是()A. B.C. D.2.若3x>﹣3y,则下列不等式中一定成立的是()A. B. C. D.3.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,4.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2 B.a=5,b=12,c=13 C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:55.下列图象不能反映y是x的函数的是()A. B.C. D.6.如图,,,下列结论错误的是()A. B.C. D.7.王老师乘公共汽车从地到相距千米的地办事,然后乘出租车返回,出租车的平均速度比公共汽车多千米/时,回来时所花的时间比去时节省了,设公共汽车的平均速度为千米/时,则下面列出的方程中正确的是()A. B.C. D.8.已知关于x、y的方程组,解是,则2m+n的值为()A.﹣6 B.2 C.1 D.09.下列多项式中,不能用平方差公式分解的是()A. B.C. D.10.以下列各组数据为三角形的三边,能构成直角三角形的是()A.4cm,8cm,7cm B.2cm,2cm,2cmC.2cm,2cm,4cm D.6cm,8cm,10cm二、填空题(每小题3分,共24分)11.用科学记数法表示0.00218=_______________.12.多项式因式分解为_________13.近似数3.1415926用四舍五入法精确到0.001的结果是_____.14.在实数范围内分解因式:_______________________.15.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(﹣2,﹣3),棋子B的坐标为(1,﹣2),那么棋子C的坐标是_____.16.为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).17.已知直线AB的解析式为:y=kx+m,且经过点A(a,a),B(b,8b)(a>0,b>0).当是整数时,满足条件的整数k的值为.18.已知:如图,点在同一直线上,,,则______.三、解答题(共66分)19.(10分)如图所示,在正方形网格中,若点的坐标是,点的坐标是,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C的坐标.(2)在图中作出△ABC关于x轴对称的△A1B1C1.20.(6分)先化简,再求值:,其中满足.21.(6分)如图,在平面直角坐标系中,直线与轴交于点,直线与轴交于点,与相交于点.(1)求点的坐标;(2)在轴上一点,若,求点的坐标;(3)直线上一点,平面内一点,若以、、为顶点的三角形与全等,求点的坐标.22.(8分)如图,已知Rt△ABC中,∠C=90°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG.(1)依题意补全图形;(2)求∠AGE的度数(用含α的式子表示);(3)猜想:线段EG与EF,AF之间是否存在一个数量关系?若存在,请写出这个数量关系并证明;若不存在,请说明理由.23.(8分)用配方法解方程:.24.(8分)如图,直线与轴、轴分别相交于点、,与直线相交于点.(1)求点坐标;(2)如果在轴上存在一点,使是以为底边的等腰三角形,求点坐标;(3)在直线上是否存在点,使的面积等于6?若存在,请求出点的坐标,若不存在,请说明理由.25.(10分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.26.(10分)在直角坐标系中如图所示,请写出点的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用勾股定理的逆定理逐项判断即可.【详解】解:A、设a=x,则b=x,c=x,∵(x)2+(x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;B、设a=x,则b=x,c=x,∵(x)2+(x)2=(x)2,∴此三角形是直角三角形,故本选项符合题意;C、设a=2x,则b=2x,c=3x,∵(2x)2+(2x)2≠(3x)2,∴此三角形不是直角三角形,故本选项不符合题意;D、设a=x,则b=2x,c=x,∵(x)2+(2x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;故选B.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2、A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.3、B【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.4、D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;

B、∵52+122=132,

∴此三角形是直角三角形,故本选项不符合题意;

C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C

∴∠A=90°,

∴此三角形是直角三角形,故本选项不符合题意;

D、设∠A=3x,则∠B=4x,∠C=5x,

∵∠A+∠B+∠C=180°,

∴3x+4x+5x=180°,解得x=15°

∴∠C=5×15°=75°,

∴此三角形不是直角三角形,故本选项符号要求;

故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5、C【详解】解:A.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意;B.当x取一值时,y有唯一与它对应的值,y是x的函数,;不符合题意C.当x取一值时,y没有唯一与它对应的值,y不是x的函数,符合题意;D.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意.故选C.6、D【分析】根据全等三角形的判定及性质逐一判断即可.【详解】解:在△ABE和△ACD中∴△ABE≌△ACD,故A选项正确;∴∠B=∠C,故C选项正确;∵,∴AB-AD=AC-AE∴,故B选项正确;无法证明,故D选项错误.故选D.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的判定定理和性质定理是解决此题的关键.7、A【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是小时,回来时的时间是,∵回来时所花的时间比去时节省了,∴,故选:A.【点睛】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.8、A【解析】把代入方程组得到关于m,n的方程组求得m,n的值,代入代数式即可得到结论.【详解】把代入方程得:解得:,则2m+n=2×(﹣2)+(﹣2)=﹣1.故选A.【点睛】本题考查了解二元一次方程组,二元一次方程组的解,代数式的求值,正确的解方程组是解题的关键.9、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.10、D【解析】分析:本题用勾股定理的逆定理.即可得出.解析:A选项中,所以不能构成直角三角形,B选项是等边三角形,所以不能构成直角三角形,C选项不能构成三角形,所以不能构成直角三角形,D选项中,所以能构成直角三角形,故选D.二、填空题(每小题3分,共24分)11、2.18×10-3【解析】试题解析:用科学记数法表示为:故答案为点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.12、x(x-10)【分析】利用平方差公式分解因式再化简得出即可.【详解】解:故答案为:【点睛】此题主要考查了平方差公式分解因式,熟练应用平方差公式是解题关键.13、3.2【分析】根据近似数的精确度,用四舍五入法,即可求解.【详解】近似数3.1415926用四舍五入法精确到1.111的结果为3.2.故答案为:3.2.【点睛】本题主要考查近似数的精确度,掌握四舍五入法,是解题的关键.14、【分析】先解方程0,然后把已知的多项式写成的形式即可.【详解】解:解方程0,得,∴.故答案为:.【点睛】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键.15、(2,1)【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.16、<【解析】方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.【详解】解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,∴则故答案为:<【点睛】本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.17、9或1.【详解】把A(a,a),B(b,8b)代入y=kx+m得:,解得:k==+1=+1,∵是整数,k是整数,∴1﹣=或,解得:b=2a或b=8a,则k=1或k=9,故答案为9或1.18、【分析】先证明△ABC≌△DEF,得到∠A=∠D,由即可求得∠F的度数.【详解】解:∵BE=CF,

∴BE+EC=CF+EC,即BC=EF,

在△ABC和△DEF中,

∴△ABC≌△DEF(SSS),

∴∠A=∠D∵,∴∠F=180°-62°-40°=78°,故答案为78°.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题.三、解答题(共66分)19、(1)见解析;C(3,2);(2)见解析.【分析】(1)利用点A的坐标和点B的坐标,确定原点,建立平面直角坐标系,并写出点C的坐标即可;(2)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【详解】(1)如图所示;C(3,2);(2)如图所示:【点睛】本题考查了作图——轴对称变换,以及建立平面直角坐标系,解题的关键是熟练掌握轴对称的性质,正确建立平面直角坐标系.20、,.【分析】根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【详解】原式因为:当时,原式.【点睛】本题考查分式的化简求值,熟练掌握计算法则是解题关键.21、(1);(2)点坐标为或;(3)【分析】(1)令中y=0即可求得答案;(2)点在的下方,过点D作DE∥AC交y轴于E,求出DE的解析式即可得到点E的坐标,利用对称性即可得到点E在AC上方时点E的坐标;(3)求出直线与x轴的夹角度数,线段AD的长度,分三种情况求出点F的坐标.【详解】(1)∵点是与轴的交点,代入,,∴点的坐标;(2)当点在的下方,过点作,交轴于点,设解析式为,过,∴2+b=0,得b=-2,∴,∴,点在上方,同理可得,综上:点坐标为或(3)直线与x轴的夹角是45,∵A(-2,0),D(2,0),∴AD=4,作AF1⊥x轴,当A1F=AD=4时,△AF1P≌△ADP,此时点F1的坐标是(-2,4);作PF2∥AD,当F2=AD=4时,△APF2≌△PAD,此时点F2的坐标是(-3,3);作PF3⊥x轴,当PF3=AD=4时,△APF3≌△PAD,此时点F3的坐标是(1,-1),综上,点F的坐标为.【点睛】此题是一次函数的综合题,考查图象与坐标轴的交点坐标,利用面积求点坐标,利用三角形全等的性质求点的坐标,注意分情况讨论问题.22、(1)见解析;(2)∠AGE=60°-α;(3)EG=2EF+AF,见解析【分析】(1)根据题意和轴对称的性质,补全图形即可;(2)连接AE,根据对称的性质可得AB为ED的垂直平分线,AC为EG的垂直平分线,然后根据垂直平分线的性质可得AE=AG=AD,即可求出∠EAC和∠EAG,然后根据等边对等角和三角形的内角和定理即可求出结论;(3)在FG上截取NG=EF,连接AN,利用SAS即可证出△AEF≌△AGN,从而得出AF=FN,即可得出结论.【详解】解:(1)补全图形:如图所示.(2)连接AE由对称性可知,AB为ED的垂直平分线,AC为EG的垂直平分线.∴AE=AG=AD.∴∠AEG=∠AGE,∠BAE=∠BAD=α.∴∠EAC=∠BAC+∠BAE=30°+α.∴∠EAG=2∠EAC=60°+2α.∴∠AGE==60°-α(3)存在,即:EG=2EF+AF.证明:在FG上截取NG=EF,连接AN.∵AE=AG,∴∠AEG=∠AGE.∵EF=GN∴△AEF≌△AGN.∴AF=AN.∵∠EAF=α,∠AEG=60°-α.∴∠AFN=∠EAF+∠AEG=60°.∴△AFN为等边三角形.∴AF=FN.∴EG=EF+FN+NG=2EF+AF.【点睛】此题考查的是作点关于线段的对称点、对称的性质、垂直平分线的性质、等腰三角形的性质、等边三角形的判定及性质和全等三角形的判定及性质,掌握对称的性质、垂直平分线的性质、等腰三角形的性质、等边三角形的判定及性质和全等三角形的判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论