版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市协和双语学校2025届数学八年级第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列计算:,其中结果正确的个数为()A.1 B.2 C.3 D.42.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,153.以下列各组数据为三角形的三边,能构成直角三角形的是()A.4cm,8cm,7cm B.2cm,2cm,2cmC.2cm,2cm,4cm D.6cm,8cm,10cm4.下列标志中,不是轴对称图形的是()A. B. C. D.5.如图,四个一次函数,,,的图象如图所示,则,,,的大小关系是()A. B. C. D.6.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6 B.5 C.4 D.37.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.48.9的平方根是()A.±3 B.3 C.±81 D.±39.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有(
)个
.A.1 B.2 C.3 D.410.计算下列各式,结果为的是()A. B. C. D.11.如图,在中,AD是角平分线,于点E,的面积为28,,,则AC的长是A.8 B.6 C.5 D.412.在平面直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,直线a和直线b被直线c所截,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是________.14.若分式的值为零,则的值为__________.15.点P(3,2)关于y轴的对称点的坐标是_________.16.把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式为____________________________________________________.17.如图,在中,,点在边上,且则__________.18.如果那么_______________________.(用含的式子表示)三、解答题(共78分)19.(8分)如图,三个顶点的坐标分别为,,.(1)若与关于轴成轴对称,画出的位置,三个顶点坐标分别为_______,_________,__________;(2)在轴上是否存在点,使得,如果存在,求出点的坐标,如果不存在,说明理由.20.(8分)计算:(1)计算:(2)计算:(3)先化简,再求值,其中.21.(8分)解方程组22.(10分)某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为、、、四个等级.其中相应等级的得分依次记为10分、9分、1分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)方差一班1.7699二班1.76110请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.23.(10分)如图所示,在中,,D是AB边上一点.(1)通过度量AB.CD,DB的长度,写出2AB与的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.24.(10分)在中,,,,垂足为,且.,其两边分别交边,于点,.(1)求证:是等边三角形;(2)求证:.25.(12分)在如图所示的平面直角坐标系中:(1)画出关于轴成轴对称图形的三角形;(2)分别写出(1)中的点,,的坐标;(3)求的面积.26.现在越来越多的人在用微信付款、转账,也可以提现.把微信账户里的钱转到银行卡里叫做提现.从2016年3月1日起,每个微信账户终身享有元免费提现额度,当累计提现额度超过元时,超出元的部分要支付的手续费.以后每次提现都要支付所提现金额的的手续费.(1)张老师在今年第一次进行了提现,金额为元,他需要支付手续费元.(2)李老师从2016年3月1日起至今,用自己的微信账户共提现次,次提现的金额和手续费如下表:第一次提现第二次提现第三次提现提现金额(元)手续费(元)请问李老师前次提现的金额分别是多少元?
参考答案一、选择题(每题4分,共48分)1、D【解析】根据二次根式的运算法则即可进行判断.【详解】,正确;正确;正确;,正确,故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;.2、B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.3、D【解析】分析:本题用勾股定理的逆定理.即可得出.解析:A选项中,所以不能构成直角三角形,B选项是等边三角形,所以不能构成直角三角形,C选项不能构成三角形,所以不能构成直角三角形,D选项中,所以能构成直角三角形,故选D.4、B【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A.是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.是轴对称图形;故答案为:B.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.5、B【分析】根据一次函数和正比例函数的图象与性质可得.【详解】解:∵,经过第一、三象限,且更靠近y轴,∴,由∵,从左往右呈下降趋势,∴,又∵更靠近y轴,∴,∴故答案为:B.【点睛】本题考查了一次函数及正比例函数的图象与性质,解题的关键是熟记一次函数及正比例函数的图象与性质.6、C【分析】由∠ABC=15°,AD是高,得出BD=AD后,证△ADC≌△BDH后,得到BH=AC,即可求解.【详解】∵∠ABC=15°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,在△ADC与△BDH中,∴△ADC≌△BDH∴BH=AC=1.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=15°,AD是高,得出BD=AD是正确解答本题的关键.7、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.8、D【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±3)2=9,∴9的平方根是±3,故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9、C【解析】①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,BD=BC,∠ABD=∠CBD,BE=BA,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∴③正确;④因为BD是△ABC的角平分线,且BA>BC,所以D不可能是AC的中点,则AC≠2CD,故④错误.故选:C.【点睛】此题考查角平分线定理,全等三角形的判定与性质、等腰三角形的性质与判定、三角形内角和定理、三角形的面积关系等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.10、D【分析】分别计算每个选项然后进行判断即可.【详解】解:A.不能得到,选项错误;B.,选项错误;C.,不能得到,选项错误;D.,选项正确.故选:D.【点睛】本题考查了同底数幂的运算,熟练掌握运算法则是解题的关键.11、B【解析】过点D作于F,根据角平分线的性质可得DF=DE,然后利用的面积公式列式计算即可得解.【详解】过点D作于F,是的角平分线,,,,解得,故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.12、B【解析】根据关于y轴对称的点横坐标互为相反数,纵坐标相等进行解答即可.【详解】∵(m、n)关于y轴对称的点的坐标是(-m、n),∴点M(-3,-6)关于y轴对称的点的坐标为(3,-6),故选B.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握关于y轴对称的点的坐标特征是解题的关键.二、填空题(每题4分,共24分)13、①②③④;【详解】解:①∠1=∠2即同位角相等,能判断a∥b(同位角相等,两直线平行);②∠3=∠6为内错角相等,能判断a∥b;③易知∠4=∠6,已知∠4+∠7=180°即∠6+∠7=180°能判断a∥b(同旁内角互补,两直线平行);④易知∠5和∠3为对顶角,∠8和∠2为对顶角,故∠5+∠8=180°即∠3+∠2=180°能判断a∥b(同旁内角互补,两直线平行);综上可得①②③④可判断a∥b.【点睛】本题难度较低,主要考查学生对平行线判定定理知识点的掌握.14、【分析】令分子等于0求出x的值,再检验分母是否等于0,即可得出答案.【详解】∵分式的值为零∴x(x-1)=0∴x=0或x=1当x=1时,分母等于0,故舍去故答案为0.【点睛】本题考查的是分式值为0,属于基础题型,令分子等于0求出分式中字母的值,注意求出值后一定要检验分母是否等于0,若等于0,需舍掉.15、(﹣3,2).【详解】解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n),所以点P(3,2)关于y轴对称的点的坐标为(﹣3,2).故答案为(﹣3,2).16、“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”【分析】命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行.【详解】“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果−−−,那么−−−”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.故答案为在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.17、36°【分析】设∠A=,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【详解】设∠A=.
∵AD=CD,
∴∠ACD=∠A=;
∵CD=BC,
∴∠CBD=∠CDB=∠ACD+∠A=2;
∵AC=AB,
∴∠ACB=∠CBD=2,∵∠A+∠ACB+∠CBD=180°,
∴+2+2=180°,
∴=36°,
∴∠A=36°.故答案为:36°.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.18、【分析】直接利用同底数幂的乘法运算法则将原式变形进而得出答案.【详解】解:(1)∵∴,
∴;故答案为ab.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆运算,正确掌握运算法则是解题的关键.三、解答题(共78分)19、(1)(-1,1),(-4,2),(-3,4);(2)存在,Q(0,)或(0,-)【分析】(1)作出A、B、C关于y轴的对称点A1、B1、C1即可得到坐标,依次连接A1、B1、C1即可;(2)存在.设Q(0,m),构建方程即可解决问题.【详解】解:(1)△A1B1C1如图所示,A1(-1,1),B1(-4,2),C1(-3,4);
故答案为:(-1,1),(-4,2),(-3,4);
(3)存在.设Q(0,m),
∵S△ACQ=S△ABC,
∴|m|×3-|m|×1=(9-×2×3-×1×3-×1×2),
解得|m|=,
∴m=±,
∴Q(0,)或(0,-).【点睛】本题考查坐标与图形变化-轴对称、三角形的面积等知识,熟练掌握相关知识是解题的关键.20、(1)9;(1);(3),-1【分析】(1)根据平方根和立方根的性质进行化简,然后进行运算即可;(1)根据积的乘方,幂的乘方和同底数幂的除法进行运算即可;(3)根据多项式乘以多项式的运算法则,进行化简,再计算即可.【详解】解(1)原式=6+1+1=9;(1)原式;(3)原式==当3b-a=-1时原式=-1.【点睛】本题考查了平方根,立方根,积的乘方,幂的乘方,同底数幂的除法和多项式乘以多项式,掌握运算法则是解题关键.21、【解析】把①×2+②,消去y,求出x的值,然后把求得的x的值代入①求出y的值即可.【详解】解:,①×2+②得:7x=14,即x=2,把x=2代入①得:y=0,则方程组的解为.【点睛】本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.22、答案不唯一.【分析】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可.【详解】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可给分,否则不给分.如:选择一班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,而从中位数、众数、方差上看,一班在中位数和方差上面均优于二班,因此可以选择一班参加校级比赛.再如:选择二班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,二班的众数高于一班,因此可以选择二班参加校级比赛.【点睛】此题主要考查结合统计图进行数据分析,熟练理解相关概念是解题关键.23、(1),(2)详见解析.【分析】(1)通过度量AB、DC、DB的长度,可得;(2)在中,根据三角形两边之和大于第三边得出,在两边同时加上DB,化简得到,再根据即可得证.【详解】(1).(2)在中,∵,∴,即.又∵,∴.【点睛】本题考查了三角形三边关系应用,熟练掌握三角形三边之和大于第三边,三边之差小于第三边是解题的关键.24、(1)详见解析;(2)详见解析.【分析】(1)连接BD,根据等腰三角形性质得∠BAD=∠DAC=×120°,再根据等边三角形判定可得结论;(2)根据等边三角形性质得∠ABD=∠ADB=60°,BD=AD,证△BDE≌△ADF(ASA)可得.【详解】(1)证明:连接BD,
∵AB=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机场工程解除合同说明
- 国际模特签证管理与实施办法
- 游戏厅装修施工合同范本
- 汽车工人施工合同
- 医务室药品使用反馈机制
- 医疗服务项目
- 智能眼镜网线铺设协议
- 签约合同审核要点
- 电力设施外墙施工合同范本
- 塑料厂扩建工程补充合同
- 应对突发事件的应急响应与复盘总结
- 施工管理的成本控制与成本管理
- 《重大危险源界定》课件
- 人工智能的道德与伦理问题
- 二手车市场项目招商引资方案
- 巴西介绍课件
- 某部营房改造装修施工组织设计
- 新媒体视听节目制作 第三章 新媒体视听节目的“策划之道”
- 顺丰快递薪酬管理案例分析
- 浙江省杭州市西溪中学2023-2024学年八年级上学期期中科学试卷
- 2023年2月抗菌药物临床应用监测与评估报告
评论
0/150
提交评论