版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省抚州市名校数学八上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列各点中位于第四象限的点是()A. B. C. D.2.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则的值是()A. B. C.﹣5 D.53.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()学科数学语文英语考试成绩919488A.88 B.90 C.91 D.924.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C. D.25.下列各数中是无理数的是()A.3 B. C. D.6.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE交BD于点O,那么图中的等腰三角形个数()A.4 B.6 C.7 D.87.在,,,0,这四个数中,为无理数的是()A. B. C. D.08.在中,无理数的个数是()A.2个 B.3个 C.4个 D.5个9.将变形正确的是()A. B.C. D.10.下面各组数中不能构成直角三角形三边长的一组数是()A. B. C. D.11.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,则AB的长是()A.4 B.6 C.8 D.1012.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π二、填空题(每题4分,共24分)13.如图,∠BCD是△ABC的外角,CE平分∠BCD,若AB=AC,∠ECD=1.5°,则∠A的度数为_____.14.分解因式:_____.15.若(m+1)0=1,则实数m应满足的条件_____.16.用科学记数法表示下列各数:0.00004=_____.17.如图,在中,,点在边上,且则__________.18.已知:x2+16x﹣k是完全平方式,则k=_____.三、解答题(共78分)19.(8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.(8分)已知3a+b的立方根是2,b是的整数部分,求a+b的算术平方根.21.(8分)(1)已知,,求的值.(2)已知,,求和的值.22.(10分)如图,长方形中,,,,,点从点出发(不含点)以的速度沿的方向运动到点停止,点出发后,点才开始从点出发以的速度沿的方向运动到点停止,当点到达点时,点恰好到达点.(1)当点到达点时,的面积为,求的长;(2)在(1)的条件下,设点运动时间为,运动过程中的面积为,请用含的式子表示面积,并直接写出的取值范围.23.(10分)阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.24.(10分)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.25.(12分)化简:(1)(2)26.某商场第1次用600元购进2B铅笔若干支,第2次用800元又购进该款铅笔,但这次每支的进价是第1次进价的八折,且购进数量比第1次多了100支.(1)求第1次每支2B铅笔的进价;(2)若要求这两次购进的2B铅笔按同一价格全部销售完毕后获利不低于600元,问每支2B铅笔的售价至少是多少元?
参考答案一、选择题(每题4分,共48分)1、C【分析】根据各象限内点的坐标的符号特征,进行分析即可.【详解】A.位于第三象限,不符合题意;B.位于第一象限,不符合题意;C.位于第四象限,符合题意;D.位于第一象限,不符合题意.故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2、C【分析】直接利用关于轴对称点的性质得出,的值,进而得出答案.【详解】∵点P(,3)、Q(-2,)关于轴对称,
∴,,
则.
故选:C.【点睛】本题主要考查了关于,轴对称点的性质,正确得出,的值是解题关键.注意:关于轴对称的点,纵坐标相同,横坐标互为相反数.3、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:(分),故小华的三科考试成绩平均分式91分;故选:C.【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.4、B【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.【点睛】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.5、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、3是整数,是有理数,故选项错误;
B、是无理数,选项正确.
C、=2是整数,是有理数,选项错误;D、是分数,是有理数,故选项错误;
故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、D【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.【详解】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CE,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选:D.【点睛】本题考查了等腰三角形的判定,灵活的利用等腰三角形的性质确定角的度数是解题的关键.7、C【解析】根据无理数的定义:无限不循环小数,进行判断即可.【详解】-3,,0为有理数;为无理数.故选:C.【点睛】本题考查无理数,熟记无理数概念是解题关键.8、A【分析】根据立方根、无理数的定义即可得.【详解】是无理数,,是无限循环小数,属于有理数,是有限小数,属于有理数,,小数点后的是无限循环的,是无限循环小数,属于有理数,综上,无理数的个数是2个,故选:A.【点睛】本题考查了立方根、无理数的定义,掌握理解无理数的定义是解题关键.9、C【分析】根据进行变形即可.【详解】解:即故选:C.【点睛】此题考查了完全平方公式,掌握是解题的关键,是一道基础题,比较简单.10、D【分析】三角形的三边分别为a、b、c,如果,那么这个三角形是直角三角形.【详解】A.,能构成直角三角形;B.,能构成直角三角形;C.,能构成直角三角形;D.,不能构成直角三角形;故选:D.【点睛】此题考查勾股定理的逆定理,熟记定理并运用解题是关键.11、C【解析】试题解析:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选C.12、D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.二、填空题(每题4分,共24分)13、30°【分析】根据CE平分∠BCD以及∠BCD是△ABC的外角,得出∠ACB的度数,再根据AB=AC可得∠B=∠ACB,根据三角形内角之和为180°即可求出∠A的度数.【详解】∵CE平分∠BCD,∠ECD=1.5°,∴∠BCD=2∠ECD=105°,∴∠ACB=180°﹣∠BCD=180°﹣105°=75°,∵AB=AC,∴∠B=∠ACB=75°,∴∠A=30°,故答案为:30°.【点睛】本题考查了三角形的角度问题,掌握三角形外角的性质、三角形内角之和为180°、等腰三角形的性质是解题的关键.14、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.15、m≠﹣1【分析】根据非零数的零指数幂求解可得.【详解】解:若(m+1)0=1有意义,则m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点睛】本题考查了零指数幂的意义,非零数的零次幂等于1,零的零次幂没有意义.16、4×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00004=4×10﹣1;故答案为:4×10﹣1.【点睛】此题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、36°【分析】设∠A=,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【详解】设∠A=.
∵AD=CD,
∴∠ACD=∠A=;
∵CD=BC,
∴∠CBD=∠CDB=∠ACD+∠A=2;
∵AC=AB,
∴∠ACB=∠CBD=2,∵∠A+∠ACB+∠CBD=180°,
∴+2+2=180°,
∴=36°,
∴∠A=36°.故答案为:36°.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.18、﹣1【解析】利用完全平方公式的结构特征判断即可得到k的值.【详解】解:∵x2+16x﹣k是完全平方式,∴﹣k=1,∴k=﹣1.故答案为﹣1【点睛】本题考查完全平方式,熟练掌握完全平方公式的特征是解题关键.三、解答题(共78分)19、(1)证明见解析(2)40°.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证.(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【详解】(1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD.又∵BE=AB,∴BE=CD,BE∥CD.∴四边形BECD是平行四边形.∴BD=EC.(2)∵四边形BECD是平行四边形,∴BD∥CE,∴∠ABO=∠E=50°.又∵四边形ABCD是菱形,∴AC丄BD.∴∠BAO=90°﹣∠ABO=40°.20、1.【分析】首先根据立方根的概念可得3a+b的值,接着估计的大小,可得b的值;进而可得a、b的值,进而可得a+b;最后根据平方根的求法可得答案.【详解】解:根据题意,可得3a+b=8;又∵1<<3,
∴b=1,∴3a+1=8;
解得:a=1
∴a+b=1+1=4,
∴a+b的算术平方根为1.故答案为:1.【点睛】此题主要考查了立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.21、(1)3;(2);.【分析】(1)根据幂的乘方将已知等式变形为同底数幂。从而可得与的二元一次方程组,解方程组得出与的值代入即可;(2)根据完全平方公式解答即可.【详解】解:(1)∵,,∴,解得,∴x﹣y=4﹣1=3;(2),,;.【点睛】本题主要考查了幂的乘方以及完全平方公式,熟记公式并灵活变形是解答本题的关键.22、(1);(2).【分析】(1)先求出点P到A的时间,再根据的面积可求出a的值,然后根据“当点到达点,点恰好到点”列出等式求解即可得;(2)分三种情况:点P在线段AD上,点Q未出发;当P在线段AD上,点Q在线段CD上;当P在线段AB上,点Q在线段CD上;然后分别利用长方形的性质、三角形的面积公式求解即可得.【详解】(1)点到的时间为,此时设当点到达点,点恰好到点解得故的长为;(2)依题意,分以下三种情况讨论:①当时,点P在线段AD上,点未出发如图1,过点作于点②如图2,当,即时,点在线段上,点在线段上则,③当,即时,点在线段上,点在线段上如图3,过点作于点则综上,.【点睛】本题考查了函数的几何应用、三角形与长方形的性质等知识点,较难的是题(2),依据题意,正确分三种情况讨论是解题关键.23、(1)证明见解析(2)证明见解析【解析】1)根据以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,OP是∠MON的平分线,运用SAS判定△AOB≌△AOC即可;
(2)先截取CE=CA,连接DE,根据SAS判定△CAD≌△CED,得出AD=DE,∠A=∠CED=60°,AC=CE,进而得出结论BC=AC+AD;【详解】(1)证明:在△AOB和△AOC中,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.【点睛】本题主要考查了全等三角形的判定与性质、勾股定理以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据线段的和差关系进行推导.解题时注意方程思想的运用.24、证明见解析【解析】试题分析:根据等腰三角形的性质和三角形的内角和定理求得∠BDC=∠BCD=75°,在根据三角形外角的性质求得∠DOC=75°,即可得∠DOC=∠BDC,结论得证.试题解析:证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD.∵∠DBE=30°∴∠BDC=∠BCD=75°,∵∠ACB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年方矩管项目立项申请报告模板
- 2024-2025学年延安市志丹县三年级数学第一学期期末调研模拟试题含解析
- 2024-2025学年咸宁市崇阳县数学三年级第一学期期末监测试题含解析
- 2024-2025学年西藏山南地区曲松县三年级数学第一学期期末质量跟踪监视试题含解析
- 毕业生个人自我鉴定400字10篇
- 股权无偿转让协议书七篇
- 大学专业实习日志【5篇】
- 员工个人辞职申请书三篇
- 第6课《阿西莫夫短文两篇:恐龙无处不有》教学实录 2023-2024学年统编版语文八年级下册
- 初中英语教研组工作计划(15篇)
- 跌倒或坠床相关知识培训课件
- 2024年-(多附件条款版)个人汽车租赁给公司合同电子版
- 建工意外险培训课件
- 广东省深圳市宝安区2023-2024学年高一年级上册调研测试物理试卷
- 冰雪旅游安全知识假期旅行安全攻略
- 城市轨道交通售检票系统 课件 项目四 自动售票机
- 人口老龄化社会的挑战与机遇
- 虚实结合(上课改)课件
- 2024年山东能源集团鲁西矿业有限公司招聘笔试参考题库含答案解析
- 社区宣传工作方案及措施
- 南昌市南昌县2023-2024学年八年级上学期期末数学测试卷(含答案)
评论
0/150
提交评论