版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡市洛社中学八年级数学第一学期期末达标检测模拟试题测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A. B.C. D.2.下列从左边到右边的变形,是正确的因式分解的是()A. B.C. D.3.如图,中,,分别是,的平分线,,则等于()A. B. C. D.4.某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米.将0.0000065用科学记数法表示为的形式,其中n的值为()A.-6 B.6 C.-5 D.-75.如图,直线与的图像交于点(3,-1),则不等式组的解集是()A. B. C. D.以上都不对6.在汉字“生活中的日常用品”中,成轴对称的有()A.3个 B.4个 C.5个 D.6个7.若实数x,y,z满足,则下列式子一定成立的是()A.x+y+z=0 B.x+y-2z=0 C.y+z-2x=0 D.z+x-2y=08.已知一次函数,图象与轴、轴交点、点,得出下列说法:①A,;②、两点的距离为5;③的面积是2;④当时,;其中正确的有()A.1个 B.2个 C.3个 D.4个9.用科学记数法表示()A. B. C. D.10.如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A.1 B.3 C.3 D.二、填空题(每小题3分,共24分)11.已知:如图,中,,外角,则____________________12.人体淋巴细胞的直径大约是0.000009米,将0.000009用科学计数法表示为__________.13.如图,将绕点旋转90°得到,若点的坐标为,则点的坐标为__________.14.游泳者在河中逆流而上,于桥A下面将水壶遗失被水冲走,继续前游30分钟后他发现水壶遗失,于是立即返回追寻水壶,在桥A下游距桥1.2公里的桥B下面追到了水壶,那么该河水流的速度是_________.15.已知,,是的三边,且,则的形状是__________.16.已知,则=______.17.如图,长方形ABCD中,AD=8,AB=4,BQ=5,点P在AD边上运动,当为等腰三角形时,AP的长为_____.18.已知点与点关于直线对称,那么等于______.三、解答题(共66分)19.(10分)分式化简求值与解方程(1)分式化简求值÷,其中(2)解分式方程:20.(6分)综合与探究[问题]如图1,在中,,过点作直线平行于,点在直线上移动,角的一边DE始终经过点,另一边与交于点,研究和的数量关系.[探究发现](1)如图2,某数学学习小组运用“从特殊到一般”的数学思想,发现当点移动到使点与点重合时,很容易就可以得到请写出证明过程;[数学思考](2)如图3,若点是上的任意一点(不含端点),受(1)的启发,另一个学习小组过点,交于点,就可以证明,请完成证明过程;[拓展引申](3)若点是延长线上的任意一点,在图(4)中补充完整图形,并判断结论是否仍然成立.21.(6分)已知,如图:长方形ABCD中,点E为BC边的中点,将D折起,使点D落在点E处.(1)请你用尺规作图画出折痕和折叠后的图形.(不要求写已知,求作和作法,保留作图痕迹)(2)若折痕与AD、BC分别交于点M、N,与DE交于点O,求证△MDO≌△NEO.22.(8分)如图,点B在线段上,,,,求证:.23.(8分)(1)计算:;(2)先化简,再求值:,其中.24.(8分)问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_________度,________度,_________度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.25.(10分)某公司为增加员工收入,提高效益,今年提出如下目标,和去年相比,在产品的出厂价增加的前提下,将产品成本降低20%,使产品的利润率()较去年翻一番,求今年该公司产品的利润率.26.(10分)如图,在平面直角坐标系中,点的坐标是,动点从原点O出发,沿着轴正方向移动,以为斜边在第一象限内作等腰直角三角形,设动点的坐标为.(1)当时,点的坐标是;当时,点的坐标是;(2)求出点的坐标(用含的代数式表示);(3)已知点的坐标为,连接、,过点作轴于点,求当为何值时,当与全等.
参考答案一、选择题(每小题3分,共30分)1、D【详解】试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.2、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、右边不是积的形式,该选项错误;B、,该选项错误;
C、右边不是积的形式,该选项错误;D、,是因式分解,正确.
故选:D.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的定义.3、B【分析】根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.【详解】解:∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=180°-50°=130°,
∵BO,CO分别是∠ABC,∠ACB的平分线,,∴∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.
故选:B.【点睛】本题考查角平分线的有关计算,三角形内角和定理.本题中是将∠OBC+∠OCB看成一个整体求得的,掌握整体思想是解决此题的关键.4、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000065=6.5×10-6,则n=﹣6.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、C【分析】首先根据交点得出,判定,然后即可解不等式组.【详解】∵直线与的图像交于点(3,-1)∴∴,即由图象,得∴,解得,解得∴不等式组的解集为:故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.6、A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.7、D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=1,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=1,∴x2+z2+2xz﹣4xy+4y2﹣4yz=1,∴(x+z)2﹣4y(x+z)+4y2=1,∴(x+z﹣2y)2=1,∴z+x﹣2y=1.故选D.8、B【分析】①根据坐标轴上点的坐标特点即得;②根据两点之间距离公式求解即得;③先根据坐标求出与,再计算面积即可;④先将转化为不等式,再求解即可.【详解】∵在一次函数中,当时∴A∵在一次函数中,当时∴∴①正确;∴两点的距离为∴②是错的;∵,,∴∴③是错的;∵当时,∴,∴④是正确的;∴说法①和④是正确∴正确的有2个故选:B.【点睛】本题主要考查了一次函数与坐标轴的交点、两点距离公式及一次函数与不等式的关系,熟练掌握坐标轴上点的坐标特点及一次函数与不等式的相互转化是解题关键.9、A【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.故选A.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解析】利用等边三角形的性质得出C点位置,进而求出OC的长.【详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC是等边三角形,∴CE=AC×sin60°=,AE=BE,∵∠AOB=90°,∴EOAB,∴EC-OE≥OC,∴当点C,O,E在一条直线上,此时OC最短,故OC的最小值为:OC=CE﹣EO=3故选B.【点睛】本题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.二、填空题(每小题3分,共24分)11、65°70°【分析】利用外角性质求出∠C,再利用邻补角定义求出∠ABC.【详解】∵∠ABD=∠A+∠C,,,∴∠C=∠ABD-∠A=65°,∵∠ABC+∠ABD=180,∴∠ABC=180-∠ABD=70°故答案为:65°,70°.【点睛】此题考查外角性质,邻补角定义,会看图找到各角度的关系,由此计算得出所求的角度是解题的关键.12、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】将0.000009用科学记数法表示应是.
故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、【分析】根据点A的坐标得出点A到x轴和y轴的距离,以此得出旋转后到x轴和y轴的距离,得出的坐标.【详解】已知点的坐标为,点A到x轴的距离为b,点A到y轴的距离为a,将点A绕点旋转90°得到点,点到x轴的距离为a,点到y轴的距离为b,点在第二象限,所以点的坐标为.故答案为:.【点睛】本题考查了坐标轴上的点绕原点旋转的问题,熟练掌握计算变化后的点的横坐标和纵坐标是解题的关键.14、0.01km/min【解析】解:设该河水流的速度是每小时x公里,游泳者在静水中每小时游a公里.由题意,有=,解得x=1.1.经检验,x=1.1是原方程的解.1.1km/h=0.01km/min.故答案为:0.01km/min.点睛:本题考查分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的表示方法.另外,本题求解时设的未知数a,在解方程的过程中抵消.这种方法在解复杂的应用题时常用来帮助分析数量关系,便于解题.15、等腰三角形【分析】将等式两边同时加上得,然后将等式两边因式分解进一步分析即可.【详解】∵,∴,即:,∵,,是的三边,∴,,都是正数,∴与都为正数,∵,∴,∴,∴△ABC为等腰三角形,故答案为:等腰三角形.【点睛】本题主要考查了因式分解的应用,熟练掌握相关方法是解题关键.16、25【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【详解】∵,∴,,解得,.∴=.故答案为25.【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.17、3或或2或1【分析】根据矩形的性质可得∠A=90°,BC=AD=1,然后根据等腰三角形腰的情况分类讨论,根据勾股定理和垂直平分线等知识即可求解.【详解】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD=1,分三种情况:①BP=BQ=5时,AP===3;②当PB=PQ时,作PM⊥BC于M,则点P在BQ的垂直平分线时,如图所示:∴AP=BQ=;③当QP=QB=5时,作QE⊥AD于E,如图所示:则四边形ABQE是矩形,∴AE=BQ=5,QE=AB=4,∴PE===3,∴AP=AE﹣PE=5﹣3=2;④当点P和点D重合时,∵CQ=3,CD=4,∴根据勾股定理,PQ=5=BQ,此时AP=AD=1,综上所述,当为等腰三角形时,AP的长为3或或2或1;故答案为:3或或2或1.【点睛】此题考查的是矩形的性质、等腰三角形的性质和勾股定理,掌握矩形的性质、等腰三角形的性质、分类讨论的数学思想和勾股定理是解题关键.18、1【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x对称,则y相等,所以,.【详解】点与点关于直线对称∴,解得,∴故答案为1.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.三、解答题(共66分)19、(1),;(2)【分析】(1)先化简分式得到,再将变形为代入求值即可;(2)去分母,将分式方程化成整式方程,求出x值,再检验即可.【详解】解:(1)÷=====∵其中∴∴原式==;(2)解:去分母得:化简得:,经检验是原方程的解,∴原方程的解是.【点睛】本题考查了分式的化简求值与解分式方程,解题的关键是掌握运算法则和解法.20、[探究发现](1)见解析;[数学思考](2)见解析;[拓展引申](3)补充完整图形见解析;结论仍然成立.【分析】(1)根据等腰三角形性质和平行线性质可证;(2)在和中,证,得,可得;(3)根据题意画图,与(2)同理可得.【详解】[探究发现],,,且.即[数学思考].;在和中,.[拓展引申]如图,作,与(2)同理,可证,得.所以结论仍然成立.【点睛】考核知识点:等腰三角形判定和性质.运用全等三角形判定和性质解决问题是关键.21、(1)图见解析;(2)证明见解析【分析】(1)作DE的垂直平分线分别交AD和BC于点M、N,MN即为折痕,再以E为圆心,CD的长为半径作弧,以N为圆心,NC的长为半径作弧,两弧交于点C′,四边形MEC′N即为四边形MDCN折叠后的图形;(2)根据矩形的性质可得AD∥BC,从而得出∠MDO=∠NEO,然后根据垂直平分线的定义可得DO=EO,最后利用ASA即可证出结论.【详解】解:(1)分别以D、E为圆心,大于DE的长为半径作弧,两弧分别交于点P、Q,连接PQ,分别交AD和BC于点M、N,连接ME和DN,此时MN垂直平分DE,MN即为折痕;再以E为圆心,CD的长为半径作弧,以N为圆心,NC的长为半径作弧,两弧交于点C′,四边形MEC′N即为四边形MDCN折叠后的图形;(2)∵四边形ABCD为矩形∴AD∥BC∴∠MDO=∠NEO∵MN垂直平分DE∴DO=EO在△MDO和△NEO中∴△MDO≌△NEO【点睛】此题考查的是作折叠图形、矩形的性质和全等三角形的判定,掌握用尺规作图作线段的垂直平分线、矩形的性质和全等三角形的判定是解决此题的关键.22、证明见解析【分析】根据平行线的性质可得∠ABC=∠D,再利用SAS证明△ABC≌△EDB,根据全等三角形对应边相等即可得出结论.【详解】证明:∵,∴∠ABC=∠D,又∵,,∴△ABC≌△EDB(SAS),∴【点睛】本题考查全等三角形的判定定理.熟练掌握全等三角形的几种判定定理,并能结合题意选择合适的定理是解题关键.23、(1);(2);【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)===(2)=====将代入,得原式=【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.24、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;(2)猜想:∠ABP+∠ACP=90°-∠A;证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.(3)判断:(2)中的结论不成立.证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【点睛】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.25、今年该公司产品的利润率.【分析】设去年产品出厂价为a,去年产品成本为b,根据利润率计算公式列出方程,求出a和b的数量关系,进而求出产品的利润率.【详解】解:设去年产品出厂价为a,去年产品成本为b,根据题意,,整理得:,解得:,∴今年的利润率为.答:今年该公司产品的利润率.【点睛】本题主要考查了分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【北师】期末模拟卷01【九年级上下全册】
- 2024保育员技师理论考试172题(附答案)
- 让垃圾分类演讲稿范文
- 饮用水安全应急预案
- 脚手架施工方案15篇
- 幼儿园班主任个人工作述职报告
- 煤矿实习总结范文
- 九年级禁止燃放烟花爆竹承诺书(35篇)
- 音乐活动总结
- 22.3 实践与探索 同步练习
- 江西省萍乡市2024-2025学年高二上学期期中考试地理试题
- 新版加油站安全操作规程
- 2023年贵州黔东南州州直机关遴选公务员考试真题
- 货物质量保证措施方案
- 黑龙江省龙东地区2024-2025学年高二上学期阶段测试(二)(期中) 英语 含答案
- 4S店展厅改造装修合同
- 3-4单元测试-2024-2025学年统编版语文六年级上册
- 北师版数学八年级上册 5.8三元一次方程组课件
- 企业单位消防安全规范化管理指导手册
- 废旧物资回收投标方案(技术方案)
- 宣传视频拍摄服务投标方案(技术方案)
评论
0/150
提交评论