2025届江苏省盐城市新洋第二实验学校八年级数学第一学期期末经典模拟试题含解析_第1页
2025届江苏省盐城市新洋第二实验学校八年级数学第一学期期末经典模拟试题含解析_第2页
2025届江苏省盐城市新洋第二实验学校八年级数学第一学期期末经典模拟试题含解析_第3页
2025届江苏省盐城市新洋第二实验学校八年级数学第一学期期末经典模拟试题含解析_第4页
2025届江苏省盐城市新洋第二实验学校八年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省盐城市新洋第二实验学校八年级数学第一学期期末经典模拟试题末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列分别是四组线段的长,若以各组线段为边,其中能组成三角形的是()A.,, B.,, C.,, D.,,2.下列各数是有理数的是()A. B. C. D.π3.由下列条件不能判定为直角三角形的是()A. B.C. D.4.在平面直角坐标系中,点A(2,3)与点B关于轴对称,则点B的坐标为A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)5.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④ B.①②③ C.①②④ D.①②③④6.如图,在中,,平分,过点作于点.若,则()A. B. C. D.7.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是()A.含30°角的直角三角形 B.顶角是30的等腰三角形C.等边三角形 D.等腰直角三角形8.是同类二次根式的是()A. B. C. D.9.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A. B.C. D.10.如果x2+2ax+b是一个完全平方公式,那么a与b满足的关系是()A.b=a B.a=2b C.b=2a D.b=a211.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,在中,、分别是、的中点,,是上一点,连接、,,若,则的长度为()A.11 B.12 C.13 D.14二、填空题(每题4分,共24分)13.若关于的分式方程的解是负数,则m的取值范围是_________________.14.分解因式:=.15.一个n边形的内角和为1080°,则n=________.16.如图,平分,其中,则______度.17.已知,则______________.18.在中,将,按如图所示方式折叠,点,均落于边上一点处,线段,为折痕,若,则______.三、解答题(共78分)19.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?20.(8分)已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DM⊥AB,DN⊥AC,垂足分别为M、N.求证:BM=CN21.(8分)已知,,求下列代数式的值:(1);(2).22.(10分)已知y与x﹣2成正比例,且当x=﹣4时,y=﹣1.(1)求y与x的函数关系式;(2)若点M(5.1,m)、N(﹣1.9,n)在此函数图像上,判断m与n的大小关系.23.(10分)在平面直角坐标系中,点是一次函数图象上一点.(1)求点的坐标.(2)当时,求的取值范围.24.(10分)某农场去年生产大豆和小麦共吨.采用新技术后,今年总产量为吨,与去年相比较,大豆超产,小麦超产.求该农场今年实际生产大豆和小麦各多少吨?25.(12分)解不等式,并把解集在数轴上表示出来.26.如图,在平面直角坐标系中,点,分别在轴,轴正半轴上.(1)的平分线与的外角平分线交于点,求的度数;(2)设点,的坐标分别为,,且满足,求的面积;(3)在(2)的条件下,当是以为斜边的等腰直角三角形时,请直接写出点的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】A、7+8<16,不能构成三角形,故A错误;B、4+6>9,能构成三角形,故B正确;C、3+4=7,不能构成三角形,故C错误;D、4+5<10,不能构成三角形,故D错误.故选:B.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长那条就能够组成三角形.2、A【分析】根据实数的分类即可求解.【详解】有理数为,无理数为,,π.故选:A.【点睛】此题主要考查实数的分类,解题的关键是熟知无理数的定义.3、C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;C、∵()2+()2≠()2,故不能判定是直角三角形;D、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故是直角三角形,正确.故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、D【解析】试题解析:∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,-3).故选D.考点:关于x轴、y轴对称的点的坐标.5、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6、C【分析】先根据角平分线的性质,得出DE=DC,再根据DC=1,即可得到DE=1.【详解】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,

∴DE=DC,

∵DC=1,

∴DE=1,

故选:C.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.7、C【解析】试题分析:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选C.考点:轴对称的性质8、A【分析】根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.【详解】解:A、=4,与被开方数相同,是同类二次根式;B、=2,与被开方数不同,不是同类二次根式;C、=,与被开方数不同,不是同类二次根式;D、,与被开方数不同,不是同类二次根式.故选:A.【点睛】此题考查的是同类二次根式的判断,掌握同类二次根式的定义是解决此题的关键.9、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,

B、图形是轴对称图形,

C、图形是轴对称图形,也是中心对称轴图形,

D、图形是轴对称图形.

故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、D【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵x1+1ax+b是一个完全平方公式,∴b=a1.故选D.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.11、D【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.12、B【分析】根据三角形中位线定理得到DE=8,由,可求EF=6,再根据直角三角形斜边上的中线等于斜边的一半,即可得到AC的长度.【详解】解:∵、分别是、的中点,,∴,∵,∴,∴EF=6,∵,EF是△ACF的中线,∴;故选:B.【点睛】本题考查了三角形的中位线定理,以及直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握所学的性质进行解题,正确求出EF的长度是关键.二、填空题(每题4分,共24分)13、且【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于m的不等式,求出不等式的解集即可确定出m的范围.【详解】方程两边同乘(),

解得,

∵,

∴,

解得,

又,

∴,

∴,

即且.

故答案为:且.【点睛】本题考查了分式方程的解以及解一元一次不等式,关键是会解出方程的解,特别注意:不要漏掉隐含条件最简公分母不为1.14、【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.15、1【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.16、51°【分析】先根据三角形外角的性质求得∠BAD,再根据角平分线求得∠BAC,最后根据三角形的内角和定理即可求得∠C.【详解】解:∵∠ADC=82°,∠B=35°,

∴∠BAD=∠ADB-∠B=47°,

∵AD平分∠BAC,

∴∠BAC=2∠BAD=2×46°=94°,

∴∠C=180°-35°-94°=51°.故答案为:51°.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质.能正确识图完成角度之间的计算是解题关键.17、1【分析】根据题意直接利用同底数幂的乘法运算法则结合幂的乘方运算法则计算得出答案.【详解】解:∵,∴=1.故答案为:1.【点睛】本题主要考查同底数幂的乘法运算以及幂的乘方运算,运用相关运算法则正确将原式进行变形是解题的关键.18、【分析】由折叠的性质,得到∠MQN=∠B,∠EQF=∠C,由三角形内角和定理,得到∠B+∠C=98°,根据平角的定义,即可得到答案.【详解】解:由折叠的性质,得到∠MQN=∠B,∠EQF=∠C,∵∠A+∠B+∠C=180°,∴∠B+∠C=180°98°,∴∠MQN+∠EQF=98°,∴;故答案为:.【点睛】本题考查了折叠的性质,三角形内角和定理,以及平角的定义,解题的关键是熟练掌握折叠的性质进行解题.三、解答题(共78分)19、(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:×100%=40%,在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.(4)户外活动的平均时间为:×(10×0.5+20×1+12×1.5+8×2)=1.18(小时),∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.20、见解析【分析】先由角平分线性质得到DM=DN,再证Rt△DMB≌Rt△DNC,根据全等三角形对应边相等即可得到答案.【详解】证明:∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN

又∵点D是BC的中点∴BD=CD

,

∴Rt△DMB≌Rt△DNC(HL)∴BM=CN.【点睛】本题主要考查角平分线的性质、三角形全等的判定(AAS、ASA、SSS、SAS、HL),熟练掌握全等三角形的判定是解题的关键.21、(1);(2)或.【分析】(1)把两边平方,展开,即可求出的值;(2)先求出的值,再开方求得的值,再对原式分解因式,再整体代入求出即可.【详解】(1)∵,,

∴,

∴,

∴,

∴;(2)∵,,∴故答案为:或.【点睛】本题考查了完全平方公式和平方差的应用,能灵活运用公式进行变形是解此题的关键.22、(2)y=x-2;(2)m>n.

【分析】(2)首先根据题意设出关系式:y=k(x-2),再利用待定系数法把x=-4,y=-2代入,可得到k的值,再把k的值代入所设的关系式中,可得到答案;(2)利用一次函数图象上点的坐标特征可求出m,n的值,比较后即可得出结论.【详解】解:∵y与x-2成正比例,

∴关系式设为:y=k(x-2),

∵x=-4时,y=-2,

∴-2=k(-4-2),

解得:k=,

∴y与x的函数关系式为:y=(x-2)=x-2.

故答案为:y=x-2;(2)∵点M(5.2,m)、N(﹣2.9,n)是一次函数y=x-2图象上的两个点,

∴m=×5.2-2=2.55,n=×(-2.9)-2=-2.3.

∵2.55>-2.3,

∴m>n.【点睛】本题考查了待定系数法求一次函数关系式和一次函数图象上点的坐标特征,关键是设出关系式,代入x,y的值求k是解题的关键.23、(1);(2)【分析】(1)把点代入一次函数中求出m的值,即可求出P点坐标;(2)分别求出当时,当时,所对的y值,然后写出范围即可.【详解】(1)解:∵图象经过点,∴,解得:,∴点的坐标为.(2)对于,当时,,当时,,∵,∴函数值随的增大而减小,∴.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数和不等式知识是解决本题的关键》24、大豆,小麦今年的产量分别为110吨和240吨【分析】设农场去年生产大豆x吨,小麦y吨,利用去年计划生产大豆和小麦共吨.x+y=300,再利用大豆超产,小麦超产.今年总产量为吨,得出等式(1+20%)y+(1+1%)x=350,进而组成方程组求出答案.【详解】解:设去年大豆、小麦产量分别为x吨、y吨,由题意得:解得吨,吨.答:大豆,小麦今年的产量分别为110吨和240吨.【点睛】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.25、x>-6,见详解.【分析】通过去括号,移项,合并同类项,求出解集,然后在数轴上把解表示出来即可.【详解】去括号:,移项:,合并同类项:,数轴上表示解集如图:【点睛】本题主要考查一元一次不等式的解法,掌握解一元一次不等式的基本步骤,是解题的关键.26、(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论