2025届贵州省长顺县联考八年级数学第一学期期末考试模拟试题含解析_第1页
2025届贵州省长顺县联考八年级数学第一学期期末考试模拟试题含解析_第2页
2025届贵州省长顺县联考八年级数学第一学期期末考试模拟试题含解析_第3页
2025届贵州省长顺县联考八年级数学第一学期期末考试模拟试题含解析_第4页
2025届贵州省长顺县联考八年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省长顺县联考八年级数学第一学期期末考试模拟试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,的平分线与的垂直平分线相交于点,过点分别作于点,于点,下列结论正确的是()①;②;③;④;⑤.A.①②③④ B.②③④⑤ C.①②④⑤ D.①②③④⑤2.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30 B.20 C.25 D.153.若,则的结果是()A.7 B.9 C.﹣9 D.114.下列关于的方程中一定有实数解的是()A. B. C. D.5.已知是二元一次方程的一个解,那么的值为()A.2 B.-2 C.4 D.-46.如图,将两个全等的直角三角尺ABC和ADE如图摆放,∠CAB=∠DAE=90°,∠ACB=∠DEA=30°,使点D落在BC边上,连结EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④△ACE为等边三角形.其中正确的是()A.①②③ B.①②④ C.②③④ D.①②③④7.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x2﹣16+3x=(x+4)(x﹣4)+3x D.10x2﹣5x=5x(2x﹣1)8.下列运算错误的是()A. B. C. D.9.下列图形中,对称轴最多的图形是()A. B. C. D.10.计算:|﹣|﹣的结果是()A.1 B. C.0 D.﹣111.已知关于的分式方程的解是非负数,则的取值范围是()A. B. C.且 D.且12.如图,长方体的长为,宽为,高为,点到点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是()A.4 B.5 C. D.二、填空题(每题4分,共24分)13.如图,是等边三角形,AB=6,AD是BC边上的中线.点E在AC边上,且,则ED的长为____________.14.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为________.15.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子的最小值为”.其推导方法如下:在面积是的矩形中,设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是,模仿老师的推导,可求得式子的最小值是________.16.如图,中,,,垂足为,,,点从点出发沿线段的方向移动到点停止,连接.若与的面积相等,则线段的长度是______.17.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.18.观察下列图形的排列规律(其中△,○,☆,□分别表示三角形,圆,五角星,正方形):□○△☆□○△☆□○……,则第2019个图形是________.(填图形名称)三、解答题(共78分)19.(8分)猜想与证明:小强想证明下面的问题:“有两个角(图中的∠B和∠C)相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的∠C和边BC.(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法,并在备用图上恢复原来的样子。方法1:方法2:方法3:(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)20.(8分)如图所示,△ABC的顶点在正方形格点上.(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1.21.(8分)如图所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=6求BD的长.22.(10分)如图,已知点和点在线段上,且,点和点在的同侧,,,和相交于点.(1)求证:;(2)当,猜想的形状,并说明理由.23.(10分)先化简,再求值:(﹣a﹣2)÷.其中a与2,3构成△ABC的三边,且a为整数.24.(10分)在综合实践课上,老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰三角形纸片ABC中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)特例感知当∠BPC=110°时,α=°,点P从B向A运动时,∠ADP逐渐变(填“大”或“小”).(2)合作交流当AP等于多少时,△APD≌△BCP,请说明理由.(3)思维拓展在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.25.(12分)某射击队有甲、乙两名射手,他们各自射击次,射中靶的环数记录如下:甲:,,,,,,乙:,,,,,,(1)分别求出甲、乙两名射手打靶环数的平均数;(2)如果要选择一名成绩比较稳定的射手,代表射击队参加比赛,应如何选择?为什么?26.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?

参考答案一、选择题(每题4分,共48分)1、D【分析】连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.【详解】∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,②正确;∵P在BC的垂直平分线上,∴PC=PB,④正确;在Rt△PMC和Rt△PNB中,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.⑤正确;∴,∵,,∴,∴,①正确;∵,∴,③正确.故选D.【点睛】本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,主要考查学生运用定理进行推理的能力.2、D【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED===75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选D.【点睛】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.3、D【分析】根据完全平方的特征对式子进行整理,即(a-)2+2,最后整体代入进行计算可得结果.【详解】解:∵,∴=(a﹣)2+2=(﹣3)2+2=9+2=11,故选:D.【点睛】本题主要考查了代数式的求值,解题的关键是掌握完全平方公式.4、A【分析】根据一元二次方程根的判别式直接进行排除选项即可.【详解】A、由可得:,故方程始终有两个不相等的实数根,故符合题意;B、由可得:,当或时方程才有实数解,故不符合题意;C、由可得:,所以方程没有实数根,故不符合题意;D、由可得:,所以方程没有实数根,故不符合题意;故选A.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.5、A【分析】把x与y的值代入方程计算即可求出a的值.【详解】将代入方程得2a+2=6解得a=2故选:A【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6、B【分析】先利用旋转的性质得到AB=AC,AC=AE,则可判断△ABD为等边三角形,所以∠BAD=∠ADB=60°,则∠EAC=∠BAD=60°,再计算出∠DAC=30°,于是可对①进行判断;接着证明△AEC为等边三角形得到EA=EC,得出④正确,加上DA=DC,则根据线段垂直平分线的判定方法可对②进行判断;然后根据平行线和等腰三角形的性质,则可对③进行判断;即可得出结论.【详解】解:在Rt△ABC中,∵∠ACB=30°,∴∠ABC=60°,∵△ABC≌△ADE,∴AB=AD,AC=AE,∴△ABD为等边三角形,∴∠BAD=∠ADB=60°,∵∠CAB=∠DAE=90°,∴∠EAC=∠BAD=60°,∵∠BAC=90°,∴∠DAC=30°=∠ACB,∴∠DAC=∠DCA,①正确;∵AC=AE,∠EAC=60°,∴△ACE为等边三角形,④正确;∴EA=EC,而DA=DC,∴ED为AC的垂直平分线,②正确;∴DE⊥AC,∵AB⊥AC,∴AB∥DE,∴∠ABE=∠BED,∵AB≠AE,∴∠ABE≠∠AEB,∴∠AEB≠∠BED,∴EB平分∠AED不正确,故③错误;故选:B.【点睛】本题是三角形的综合题,主要考查了全等三角形的性质、等边三角形的判定与性质、线段垂直平分线的判定与性质等,熟练掌握等边三角形的判定与性质是解题的关键.7、D【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】A、是多项式乘法,故A选项错误;

B、右边不是积的形式,x2-4x+4=(x-2)2,故B选项错误;

C、右边不是积的形式,故C选项错误;D、符合因式分解的定义,故D选项正确;

故选D.【点睛】本题考查了因式分解的定义,解题的关键是正确理解因式分解的概念,属于基础题型.8、C【分析】根据负整数指数幂,逐个计算,即可解答.【详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【点睛】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.9、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、圆有无数条对称轴;

B、正方形有4条对称轴;

C、该图形有3条对称轴;

D、长方形有2条对称轴;

故选:A.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.10、C【分析】先计算绝对值、算术平方根,再计算减法即可得.【详解】原式=﹣=0,故选C.【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质.11、C【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【详解】解:去分母得,

m-1=x-1,

解得x=m-2,

由题意得,m-2≥0,

解得,m≥2,

x=1是分式方程的增根,所有当x=1时,方程无解,即m≠1,

所以m的取值范围是m≥2且m≠1.

故选C.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.12、B【分析】求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B,根据两点之间线段最短,BD=1+2=3,AD=4,由勾股定理得:AB===1.故选B.【点睛】考查了轴对称−最短路线问题,将长方体展开,根据两点之间线段最短,运用勾股定理解答是关键.二、填空题(每题4分,共24分)13、1【分析】根据题意易得,BD=DC,,从而得到,所以得到AE=ED,再根据直角三角形斜边中线定理得AE=EC,由三角形中位线得出答案.【详解】是等边三角形,AD是BC边上的中线,,BD=DCAE=EDED=ECDE=AE=EC故答案为1.【点睛】本题主要考查了等边三角形的性质、直角三角形斜边中线及三角形中位线,关键是根据等边三角形的性质得到角的度数,进而得到边的等量关系,最后利用三角形中位线得到答案.14、3cm【分析】先根据勾股定理求出AB的长,设CD=xcm,则cm,再由图形翻折变换的性质可知AE=AC=6cm,DE=CD=xcm,进而可得出BE的长,在中利用勾股定理即可求出x的值,进而得出CD的长.【详解】是直角三角形,AC=6cm,BC=8cm,

cm,

是翻折而成,

,

设DE=CD=xcm,,

,

在中,,

即,

解得x=3.

故CD的长为3cm.【点睛】本题考查的是翻折变换及勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.15、【分析】仿照老师的推导过程,设面积为2的矩形的一条边长为x,根据x=可求出x的值,利用矩形的周长公式即可得答案.【详解】在面积为2的矩形中,设一条边长为x,则另一条边长为,∴矩形的周长为2(x+),当矩形成为正方形时,就有x=,解得:x=,∴2(x+)=4,∴x+(x>0)的最小值为2,故答案为:2【点睛】此题考查了分式方程的应用,弄清题意,得出x=是解题的关键.16、2【分析】当△ADE与△CDE的面积相等时,DE∥AC,此时△BDE∽△BCA,利用相似三角形的对应边成比例进行解答即可.【详解】解:如下图示,依题意得,当DE∥AC时,△ADE与△CDE的面积相等,此时△BDE∽△BCA,

所以BE:AB=BD:BC,因为AB=CB,所以BE=BD所以.【点睛】本题考查了相似三角形的判定与性质,平行线间的距离以及三角形的面积.根据题意得到当DE∥AC时,△ADE与△CDE的面积相等是解题的难点.17、.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【详解】∵甲每分钟行驶12÷30=(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-(千米)则每分钟乙比甲多行驶千米故答案为18、三角形【分析】根据图形的变化规律:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化即可求解.【详解】观察图形的变化可知:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化,2019÷4=504…3所以第2019个图形是三角形.故答案为:三角形.【点睛】本题考查了图形的变化类,解决本题的关键是观察图形的变化寻找规律.三、解答题(共78分)19、(1)见解析;(2)见解析【分析】(1)根据等腰三角形的定义以及判定方法解决问题即可;

(2)构造全等三角形解决问题即可.【详解】(1)解:方法一:如图1中,在线段BC的上方,作∠EBC=∠C,延长CF交BE于A,△ABC即为所求;

方法二:如图2中,作作线段BC的垂直平分线交CF的延长线于A,△ABC即为所求;

方法三:将纸片折叠使得点B与点C重合,∠C的另一边与折痕交于点A,连接AB,△ABC即为所求;;(2)证明:方法一:如图4中,作AD⊥BC于D.

∵∠B=∠C,∠ADB=∠ADC=90°,AD=AD,

∴△ADB≌△ADC(AAS),

∴AB=AC.

方法二:如图5中,作AT平分∠BAC交BC于T.

∵∠B=∠C.∠TAB=∠TAC,AT=AT,

∴△ATB≌△ATC(AAS),

∴AB=AC.【点睛】本题考查等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)C(-2,-1);(2)见解析【分析】(1)根据平面直角坐标系写出坐标即可;(2)利用网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可.【详解】(1)点C(﹣2,﹣1);(2)如图所示,△A1B1C1即为所求作的三角形.【点睛】本题考查了利用轴对称变换作图,在平面直角坐标找点的坐标,比较简单,熟练掌握网格结构是解答本题的关键.21、1.【详解】试题分析:由题意先求得∠B=∠C=10°,再由AD⊥AC,求得∠ADC=60°,则∠BAD=10°,然后得出AD=BD.∵AB=AC,∠BAC=120°,∴∠B=∠C=10°,∵AD⊥AC,DC=6,∴AD=CD=1,∠ADC=60°.∴∠B=∠BAD=10°.∴AD=BD=1.考点:1.含10度角的直角三角形;2.等腰三角形的判定与性质.22、(1)见解析;(2)是等边三角形,理由见解析【分析】(1)直接根据SAS判定定理即可证明;(2)直接根据等边三角形的判定定理即可证明.【详解】(1)证明:∵,∴,即,在和中,∴;(2)解:是等边三角形,理由如下:∵,∴,∵,∴,∴是等边三角形.【点睛】此题主要考查全等三角形的判定、等边三角形的判定,熟练进行逻辑推理是解题关键.23、﹣a2+2a,-3【解析】分析:先算减法,再把除法变成乘法,算乘法,求出a,最后代入请求出即可.详解:原式∵a与2,3构成△ABC的三边,且a为整数,∴a为2、3、4,当a=2时,a−2=0,不行舍去;当a=4时,a−4=0,不行,舍去;当a=3时,原式=−3.点睛:考查分式混合运算以及三角形的三边关系,掌握分式混合运算的法则是解题的关键.24、(1)40°,小;(2)当AP=5时,△APD≌△BCP,理由详见解析;(3)当α=45°或90°时,△PCD是等腰三角形.【分析】(1)先根据三角形内角和定理求出∠B的度数,再一次运用三角形内角和定理即可求出的度数;根据三角形内角和定理即可判断点P从B向A运动时,∠ADP的变化情况;(2)先根据三角形外角等于与它不相邻的两个内角和得到∠APC=∠B+α=30°+∠PCB,再证明∠APD=∠BCP,根据全等三角形的判定定理,即可得到当AP=5时,△APD≌△BCP.(3)根据等腰三角形的判定,分三种情况讨论即可得到;【详解】解:(1)∵CA=CB=5,∠ACB=120°,∴∠B=∠A==30°,∴,∵三角尺的直角边PM始终经过点C,∴再移动的过程中,∠APN不断变大,∠A的度数没有变化,∴根据三角形的内角和定理,得到∠ADP逐渐变小;故答案为:40°,小.(2)当AP=5时,△APD≌△BCP.理由如下:∵∠ACB=120°,CA=CB,∴∠A=∠B=30°.又∵∠APC是△BPC的一个外角,∴∠APC=∠B+α=30°+∠PCB,∵∠APC=∠DPC+∠APD=30°+∠APD,∴∠APD=∠BCP,当AP=BC=5时,在△APD和△BCP中,∴△APD≌△BCP(ASA);(3)△PCD的形状可以是等腰三角形.根据题意得:∠PCD=120

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论