版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省厦门市金鸡亭中学数学八上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①② B.①②③ C.①③ D.②③2.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.① B.② C.①和② D.①②③3.下列根式中不是最简二次根式的是()A. B. C. D.4.如图,用尺规作已知角的平分线的理论依据是()A.SAS B.AAS C.SSS D.ASA5.等腰三角形的两边长分别为和,则它的周长为()A. B. C. D.或6.已知图中的两个三角形全等,则∠α等于()A.72° B.60° C.58° D.48°7.不等式1+x≥2﹣3x的解是()A. B. C. D.8.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,当蚂蚁运动的时间为时,蚂蚁与点的距离为则关于的函数图像大致是()A. B.C. D.9.若,则下列各式中不一定成立的是()A. B. C. D.10.正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.11.如图是一个正方形,分成四部分,其面积分别是a2,ab,b2,则原正方形的边长是()A.a2+b2 B.a+b C.a﹣b D.a2﹣b212.已知M=m﹣4,N=m2﹣3m,则M与N的大小关系为()A.M>N B.M=N C.M≤N D.M<N二、填空题(每题4分,共24分)13.在中,,则的度数是________°.14.在等腰中,若,则__________度.15.如图,已知△ABC是等边三角形,分别在AC、BC上取点E、F,且AE=CF,BE、AF交于点D,则∠BDF=______.16.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.17.定义运算“※”:a※b=,若5※x=2,则x的值为___.18.已知:如图,点在同一直线上,,,则______.三、解答题(共78分)19.(8分)解方程组:.20.(8分)计算=21.(8分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM=2,CN=3,求线段MN的长.22.(10分)如图,直线l1:y=﹣x与直线l2相交于点A,已知点A的纵坐标为,直线l2交x轴于点D,已知点D横坐标为﹣4,将直线l1向上平移3个单位,得到直线l3,交x轴于点C,交直线l2于点B.(1)求直线l2的函数表达式;(2)求的面积.23.(10分)已知,直线AB∥CD.(1)如图1,若点E是AB、CD之间的一点,连接BE.DE得到∠BED.求证:∠BED=∠B+∠D.(1)若直线MN分别与AB、CD交于点E.F.①如图1,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;②如图3,EG1和EG1为∠BEF内满足∠1=∠1的两条线,分别与∠EFD的平分线交于点G1和G1.求证:∠FG1E+∠G1=180°.24.(10分)如图,已知点E,C在线段BF上,BE=CF,∠ABC=∠DEF,AB=DE,(1)求证:△ABC≌△DEF.(2)求证:AC∥DF25.(12分)如图,是的外角的平分线,且交的延长线于点.(1)若,,求的度数;(2)请你写出、、三个角之间存在的等量关系,并写出证明过程.26.金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB,∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC,OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质2、D【解析】如图,证明△ABE≌△ACF,得到∠B=∠C;证明△CDE≌△BDF;证明△ADC≌△ADB,得到∠CAD=∠BAD;即可解决问题.解:如图,连接AD;在△ABE与△ACF中,AB=AC,∠EAB=∠FAC,AE=AF,∴△ABE≌△ACF(SAS);∴∠B=∠C,∵AB=AC,AE=AF,∴BF=CE,在△CDE和与△BDF中,∠B=∠C,∠BDF=∠CDE,BF=CE,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,AC=AB,∠C=∠B,DC=DB,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选D.“点睛”该题主要考查了全等三角形的判定及其性质的应用问题:应牢固掌握全等三角形的判定及其性质定理,这是灵活运用解题的基础.3、C【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C4、C【解析】由画法得OM=ON,NC=MC,又因为OC=OC,所以△OCN≌△OCM(SSS),所以∠CON=∠COM,即OC平分∠AOB.故选C.5、C【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为和,∴它的三边长可能为8cm,8cm,4cm或4cm,4cm,8cm,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.6、D【分析】直接利用全等三角形的性质得出对应角进而得出答案.【详解】解:∵图中的两个三角形全等,∴∠α=180°﹣60°﹣72°=48°.故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质.7、B【分析】按照解不等式的步骤移项、合并同类项、系数化1,进行求解即可.【详解】移项得,x+3x≥2﹣1,合并同类项得,4x≥1,化系数为1得,.故选:B.【点睛】此题主要考查不等式的求解,熟练掌握,即可解题.8、B【分析】根据蚂蚁在半径OA、和半径OB上运动时,判断随着时间的变化s的变化情况,即可得出结论.【详解】解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过半径OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到这一段,蚂蚁到O点的距离S不变,图象是与x轴平行的线段;走另一条半径OB时,S随t的增大而减小;故选:B.【点睛】本题主要考查动点问题的函数图象,根据随着时间的变化,到这一段,蚂蚁到O点的距离S不变,得到图象的特点是解决本题的关键.9、D【分析】根据不等式的性质进行解答.【详解】A、在不等式的两边同时减去1,不等式仍成立,即,故本选项不符合题意.
B、在不等式的两边同时乘以3,不等式仍成立,即,故本选项不符合题意.
C、在不等式的两边同时乘以-1,不等号方向改变,即,故本选项不符合题意.
D、当时,不等式不一定成立,故本选项符合题意.
故选:D.【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10、A【分析】根据的函数值随的增大而减小,得到k0,由此判定所经过的象限为一、二、三象限.【详解】∵的函数值随的增大而减小,∴k0,∴经过一、二、三象限,A选项符合.故选:A.【点睛】此题考查一次函数的性质,y=kx+b中,k0时图象过一三象限,k0时图象过二四象限;b0时图象交y轴于正半轴,b0时图象交y轴于负半轴,掌握特点即可正确解答.11、B【分析】四部分的面积和正好是大正方形的面积,根据面积公式可求得边长.【详解】解:∵a2+2ab+b2=(a+b)2,∴边长为a+b.故选B.考点:完全平方公式的几何背景.点评:本题考查了完全平方公式的几何意义,通过图形验证了完全平方公式,难易程度适中.12、C【分析】利用完全平方公式把N﹣M变形,根据偶次方的非负性解答.【详解】解:N﹣M=(m2﹣3m)﹣(m﹣4)=m2﹣3m﹣m+4=m2﹣4m+4=(m﹣2)2≥0,∴N﹣M≥0,即M≤N,故选:C.【点睛】本题考查的是因式分解的应用,掌握完全平方公式、偶次方的非负性是解题的关键.二、填空题(每题4分,共24分)13、60【分析】用分别表示出,再根据三角形的内角和为即可算出答案.【详解】∵∴∴∴∴故答案为:60【点睛】本题考查了三角形的内角和,根据题目中的关系用分别表示出是解题关键.14、40°或70°或100°.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【详解】(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°-∠A-∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°-∠A)=70°;故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况的时∠B的度数是解此题的关键.15、60°.【解析】试题分析:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠C=60°,AB=AC,又∵AE=CF,∴△ABE≌△ACF(SAS),∴∠ABE=∠CAF,∴∠BDF=∠BAD+∠ABE=∠BAD+∠CAF=∠BAC=60°.考点:1.等边三角形的性质;2.全等三角形的性质和判定;3.三角形的外角的性质.16、SSS【解析】试题分析:根据作图得出AB=AD,CD=CB,根据全等三角形的判定得出即可.解:由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故答案为SSS.考点:全等三角形的判定.17、2.5或1.【详解】解:当5>x时,5※x=2可化为,解得x=2.5,经检验x=2.5是原分式方程的解;当5<x,5※x=2可化为,解得x=1,经检验x=1是原分式方程的解.故答案为:2.5或1.【点睛】本题考查了新定义运算,弄清题中的新定义是解本题的关键,解题时注意分类讨论思想.18、【分析】先证明△ABC≌△DEF,得到∠A=∠D,由即可求得∠F的度数.【详解】解:∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS),
∴∠A=∠D∵,∴∠F=180°-62°-40°=78°,故答案为78°.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题.三、解答题(共78分)19、【分析】运用加减消元法求解即可.【详解】解:①②得,解得.将代入②得,解得原方程组的解为【点睛】此题考查了解二元一次方程组,解二元一次方程组有两种方法:代入消元法和加减消元法.20、3【解析】原式=2+1=321、线段MN的长为1.【解析】利用两直线平行内错角相等,和角平分线性质可求出∠MEB=∠MBE,∠NEC=∠NCE,从而ME=MB,NE=NC,则MN=ME+NE=BM+CN=1.【详解】解:∵MN∥BC,∴∠MEB=∠CBE,∠NEC=∠BCE,∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE,∴∠MEB=∠MBE,∠NEC=∠NCE,∴ME=MB,NE=NC,∴MN=ME+NE=BM+CN=1,故线段MN的长为1.【点睛】本题考查了平行线的性质,角平分线的性质,等角对等边的性质,利用边长的转化可求出线段的长.22、(1)y=x+2;(2)【分析】(1)根据待定系数法求得即可;
(2)求得平移后的解析式,联立解析式求得B的坐标,进而求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.【详解】解:(1)∵直线l1:y=﹣x与直线l2相交于点A,已知点A的纵坐标为,∴A(﹣1,),设直线l2的函数表达式为y=kx+b,将A(﹣1,),D(﹣4,0)代入得,解得,∴直线l2为y=x+2;(2)将直线l1向上平移3个单位,得到直线l3为y=,解得,∴B(,),在直线l3为y=﹣x+3中,令y=0,则x=2,∴C(2,0),∴S△BOC==.【点睛】本题考查了一次函数的图象与几何变换,待定系数法求一次函数的解析式,三角形面积等,求得交点坐标是解题的关键.23、(1)证明见解析;(1)①∠EGF=90°,证明见解析;②证明见解析.【分析】(1)过点E作EF∥AB,则有∠BEF=∠B根据平行线的性质即可得到结论;
(1)①由(1)中的结论得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=1∠BEG,∠EFD=1∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到1∠BEG+1∠GFD=180°,即可得到结论;
②过点G1作G1H∥AB,由结论可得∠G1=∠1+∠3,由平行线的性质得到∠3=∠G1FD,由于FG1平分∠EFD,求得∠EFG1=∠G1FD=∠3,由于∠1=∠1,于是得到∠G1=∠1+∠EFG1,由三角形外角的性质得到∠EG1G1=∠1+∠EFG1=∠G1,然后根据平角的性质即可得到结论.【详解】(1)证明:如图1过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D;(1)①如图1所示,猜想:∠EGF=90°.证明:由(1)中的结论得∠EGF=∠BEG+∠GFD,∵EG.FG分别平分∠BEF和∠EFD,∴∠BEF=1∠BEG,∠EFD=1∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴1∠BEG+1∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;②证明:如图3,过点G1作G1H∥AB∵AB∥CD∴G1H∥CD∴∠3=∠G1FD由(1)结论可得∠G1=∠1+∠3∵FG1平分∠EFD∴∠EFG1=∠G1FD=∠3∵∠1=∠1∴∠G1=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产 专题报告-成都-严森-蓝光雍锦系产品研究
- 糖果行业的价格竞争与波动分析
- DB4107T 502-2024 专利申请快速预审服务规范
- 口腔科利用PDCA循环降低颌面外科患者胃管自拔率品管圈QCC活动书面报告
- 2023年变速箱齿轮资金筹措计划书
- 强化复合地板浸渍纸生产工艺设计
- 纤维增强复合材料防眩栅技术规范-编制说明
- 有意义的研讨会主持词(3篇)
- 消防月活动总结
- 新教材高考地理二轮复习二7类选择题技法专项训练技法3含答案
- 中国围棋竞赛规则(2002)
- 消防检验批验收记录表
- 信息化系统集成项目项目竣工报告建文
- 中国建设银行员工内部等级表
- 培智学校课程标准
- 2017年泰安市职业技术院校技能大赛
- 建筑CAD平面图信息化大赛教学教案
- 第一节细菌和真菌的分布ppt
- 海尼曼G1内容梳理(2)
- 新版atstudy系统测试计划
- 求异思维换个度
评论
0/150
提交评论