




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省安远县数学八上期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,是等腰的顶角的平分线,点在上,点在上,且平分,则下列结论错误的是()A. B. C. D.2.甲乙丙丁四个同学玩接力游戏,合作定成一道分式计算题,要求每人只能在前一人的基础上进行一步计算,再将结果传递给下一人,最后完成计算,过程如图所示,接力中出现错误的是()A.只有乙 B.甲和丁 C.丙和丁 D.乙和丁3.如图,若BC=EC,∠BCE=∠ACD,则添加不能使△ABC≌△DEC的条件是()A. B. C. D.4.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min5.二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣26.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.40° B.80° C.90° D.140°7.计算的值为().A. B.-2 C. D.28.已知,则()A. B. C. D.9.如果4x2—ax+9是一个完全平方式,则a的值是()A.+6B.6C.12D.+1210.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,﹣1) D.(2,1)11.如图所示,平分,,,以此三个中的两个为条件,另一个为结论,可构成三个命题,即,,.其中正确的命题的个数是A.0 B.1 C.2 D.312.方程组的解为则a,b的值分别为()A.1,2 B.5,1 C.2,1 D.2,3二、填空题(每题4分,共24分)13.如果x+=3,则的值等于_____14.若的值为零,则的值是____.15.有一个长方体,长为4cm,宽2cm,高2cm,试求蚂蚁从A点到G的最短路程________16.若在实数范围内有意义,则x的取值范围是____________.17.0.00000203用科学记数法表示为____.18.若式子在实数范围内有意义,则x应满足的条件是______.三、解答题(共78分)19.(8分)如图,在中,平分交于点,点是边上一点,连接,若,求证:.20.(8分)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?21.(8分)如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.(1)求证:AD∥BC;(2)CD与EF平行吗?写出证明过程;(3)若DF平分∠ADC,求证:CE⊥DF.22.(10分)如图,已知,,三点.(1)作关于轴的对称图形,写出点关于轴的对称点的坐标;(2)为轴上一点,请在图中找出使的周长最小时的点并直接写出此时点的坐标(保留作图痕迹).23.(10分)将分别标有数字1、2、3的三张硬纸片,反面一样,现把三张硬纸片搅均反面朝上(1)随机抽取一张,恰好是奇数的概率是多少(2)先抽取一张作为十位数(不放回),再抽取一张作为个位数,能组成哪些两位数,将它们全部列出来,并求所取两位数大于20的概率24.(10分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.25.(12分)如图1,在平面直角坐标系中,点A(0,3),点B(-1,0),点D(2,0),DE⊥x轴且∠BED=∠ABD,延长AE交x轴于点F.(1)求证:∠BAE=∠BEA;(2)求点F的坐标;(3)如图2,若点Q(m,-1)在第四象限,点M在y轴的正半轴上,∠MEQ=∠OAF,设AM-MQ=n,求m与n的数量关系,并证明.26.在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.
参考答案一、选择题(每题4分,共48分)1、D【分析】先根据ASA证明△AED≌△AFD,得到AE=AF,DE=DF,∠AED=∠AFD,进而得到BE=FC,∠BED=∠CFD,从而证明△BED≌△CFD,再判断各选项.【详解】∵AD是等腰△ABC的顶角的平分线,AD平分∠EDF,∴∠DAE=∠DAF,∠EDA=∠FDA,在△ADE和△ADF中,∴△ADE≌△ADF(ASA).∴AE=AF,DE=DF,∠AED=∠AFD,∴∠BED=∠CFD,∵△ABC是等腰三角形,∴AB=AC,又∵AE=AF,∴BE=CF,(故A选项正确)在△BED和△CFD中,,∴△BED≌△CFD(SAS),∴,.(故B、C正确).故选:D.【点睛】考查了全等三角形的判定和性质,解题关键是根据ASA证明△ADE≌△ADF(ASA),得到AE=AF,DE=DF,∠AED=∠AFD,进而得到BE=FC,∠BED=∠CFD,从而证明△BED≌△CFD.2、C【分析】直接利用分式的加减运算法则计算得出答案.【详解】=﹣=﹣==,则接力中出现错误的是丙和丁.故选:C.【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.3、A【分析】由∠BCE=∠ACD可得∠ACB=∠DCE,结合BC=EC根据三角形全等的条件逐一进行分析判断即可.【详解】∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,又∵BC=EC,∴添加AB=DE时,构成SSA,不能使△ABC≌△DEC,故A选项符合题意;添加∠B=∠E,根据ASA可以证明△ABC≌△DEC,故B选项不符合题意;添加AC=DC,根据SAS可以证明△ABC≌△DEC,故C选项不符合题意;添加∠A=∠D,根据AAS可以证明△ABC≌△DEC,故D选项不符合题意,故选A.【点睛】本题考查了三角形全等的判定,准确识图,熟练掌握全等三角形的判定方法是解题的关键.4、D【解析】A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.5、D【分析】根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.【详解】由题意,得2x+4≥0,解得x≥-2,故选D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.6、B【解析】由题意得:∠C=∠D,∵∠1=∠C+∠3,∠3=∠2+∠D,∴∠1=∠2+∠C+∠D=∠2+2∠C,∴∠1-∠2=2∠C=80°.故选B.点睛:本题主要运用三角形外角的性质结合轴对称的性质找出角与角之间的关系.7、D【分析】由负整数指数幂的定义,即可得到答案.【详解】解:;故选:D.【点睛】本题考查了负整数指数幂,解题的关键是熟练掌握负整数指数幂的定义进行解题.8、C【分析】根据同底数幂的乘法、幂的乘方,即可解答.【详解】解:,故选:C.【点睛】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.9、D【解析】这里首末两项是2x和3这两个数的开方,那么中间一项为加上或减去2x和3的积的2倍,故a=2×2×3=12.解:∵(2x±3)2=4k2±12x+9=4x2-ax+9,∴a=±2×2×3=±12.故选D.10、D【分析】先利用已知两点的坐标画出直角坐标系,然后可写出白棋(甲)的坐标.【详解】根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选D.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.11、C【解析】根据全等三角形的性质解答.【详解】解:错误,两个全等三角形的对应角相等,但不一定是直角;
正确,两个全等三角形的对应边相等;
正确,两个全等三角形的对应角相等,即AC平分;
故选:C.【点睛】考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.12、B【解析】把代入方程组得解得故选B.二、填空题(每题4分,共24分)13、【分析】由x+=3得x2+2+=9,即x2+=1,整体代入原式==,计算可得结论.【详解】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=1.∵x≠0,∴原式====.故答案为.【点睛】本题主要考查分式的值,解题的关键是熟练掌握整体代入思想的运用及利用分式的基本性质对分式变形.14、-1【分析】根据分式的值为零的条件:分子=0且分母≠0即可求出m,然后代入求值即可.【详解】解:∵的值为零∴解得:m=-1∴故答案为:-1.【点睛】此题考查的是分式的值为零的条件和零指数幂的性质,掌握分式的值为零的条件:分子=0且分母≠0和零指数幂的性质是解决此题的关键.15、【分析】两点之间线段最短,把A,G放到同一个平面内,从A到G可以有3条路可以到达,求出3种情况比较,选择最短的.【详解】解:第一种情况:第二种情况:第三种情况:综上,最小值为【点睛】如此类求蚂蚁从一个点到另一个点的最短距离的数学问题,往往都需要比较三种路径的长短,选出最优的.16、x<-3【解析】先根据二次根式有意义的条件列出关于的不等式,求出的取值范围即可.【详解】解:依题意得:,解得.故选答案为.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0,在本题中,是分式的分母,不能等于零.17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000203用科学记数法表示为2.03×10−1,故答案为:2.03×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、x≥【分析】由二次根式有意义的条件得:2x﹣1≥0,然后解不等式即可.【详解】解:由题意得:2x﹣1≥0,解得:x≥,故答案为:x≥.【点睛】本题考查了二次根式有意义的条件,即掌握二次根式有意义的条件为被开方数不为0是解答本题的关键.三、解答题(共78分)19、证明见解析【分析】先求出∠BAC的度数,进而得出∠BAD,因为∠BAD=40°=∠ADE,由“内错角相等,两直线平行”即可判断.【详解】证明:在中,,平分,【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.20、(1)每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车;(2)1名【分析】(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设还需要招聘m名新工人才能完成一个月的生产计划,根据工作总量=工作效率×人数结合计划一个月生产200辆,即可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,依题意,得:,解得:.答:每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=1.答:还需要招聘1名新工人才能完成一个月的生产计划.【点睛】本题考查的是用二元一次方程组解决问题中的工程问题,理解题意,找准数量关系列出方程组是解答关键.21、(1)详见解析;(2)CD∥EF,证明详见解析;(3)详见解析.【分析】(1)根据同角的补角相等,即可得到∠CBF=∠DAB,进而得到AD∥BC;(2)依据∠BCD=2∠DCE,∠BCD=2∠E,即可得出∠E=∠DCE,进而判定CD∥EF;(3)依据AD∥BC,可得∠ADC+∠DCB=180°,进而得到∠COD=90°,即可得出CE⊥DF.【详解】解:(1)∵∠DAE+∠CBF=180°,∠DAE+∠DAB=180°,∴∠CBF=∠DAB,∴AD∥BC;(2)CD与EF平行.∵CE平分∠BCD,∴∠BCD=2∠DCE,又∵∠BCD=2∠E,∴∠E=∠DCE,∴CD∥EF;(3)∵DF平分∠ADC,∴∠CDF=∠ADC,∵∠BCD=2∠DCE,∴∠DCE=∠DCB,∵AD∥BC,∴∠ADC+∠DCB=180°,∴∠CDF+∠DCE=(∠ADC+∠DCB)=90°,∴∠COD=90°,∴CE⊥DF.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22、(1)画图见解析;(2)画图见解析,点的坐标为【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【详解】(1)如图所示,即为所求;的坐标为,(2)如图所示,连接,交轴于点,点的坐标为.【点睛】本题考查了作图-轴对称变换,轴对称-最短路线问题,熟练掌握轴对称的性质是解题的关键.23、(1);(2)共有12、13、21、23、31、32六种情况,【分析】根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.【详解】解:(1)根据题意分析可得:有分别标有数字1、2、3的三张硬纸片,其中奇数有2个;故随机抽取一张,恰好是奇数的概率为;(2)共有12、13、21、23、31、32六种情况,大于20的有4个;故其概率为.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【详解】解:证明:∵DE⊥AB,
∴∠AED=90°=∠ACB,
又∵AD平分∠BAC,
∴∠DAE=∠DAC,
∵AD=AD,
∴△AED≌△ACD,
∴AE=AC,
∵AD平分∠BAC,
∴AD⊥CE,
即直线AD是线段CE的垂直平分线.【点睛】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.25、(1)证明见解析;(2)F(3,0);(3)m=n,证明见解析.【分析】(1)先证明△ABO≌△BED,从而得出AB=BE,然后根据等边对等角可得出结论;(2)连接OE,设DF=x,先求出点E的坐标,再根据S△AOE+S△EOF=S△AOF可得出关于x的方程,求出x,从而可得出点F的坐标;(3)过Q作QP∥x轴交y轴于P,过E作EG⊥OA,EH⊥PQ,垂足分别为G,H,在GA上截取GK=QH,先证明△EQH≌△EKG,再证明△KEM≌△QEM,得出MK=MQ,从而有AM-MQ=AM-MK=AK=n①;连接EP,证明△AEK≌△PEQ,从而有AK=PQ=m②,由①②即可得出结论.【详解】解:(1)∵A(0,3),B(-1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,又∠AOB=∠BDE=90°,∠BED=∠ABD,∴△ABO≌△BED(AAS),∴BA=BE,∴∠BAE=∠BEA;(2)由(1)知,△ABO≌△BED,∴DE=BO=1,∴E(2,1),连接OE,设DF=x,∵S△AOE+S△EOF=S△AOF,∴3×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学一年级语文结构分析试题及答案
- 汽车修理行业面临的机遇与挑战试题及答案
- 2025年小学一年级新颖测试试题及答案
- 山东省聊城市2024-2025学年高二上学期1月期末生物试题 含解析
- 皮肤学基础知识考题及答案
- 2024年美容师团队领导能力试卷试题及答案
- 2024年食品质检员考试的经典案例分析试题及答案
- 统计学数据归纳总结试题答案
- c语言关于函数的试题及答案
- 进行宠物营养评估的方法及试题及答案
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- 2025年兰考三农职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025电动自行车集中充电设施第2部分:充换电服务信息交换
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 统编历史七年级下册(2024版)第7课-隋唐时期的科技与文化【课件】f
- 桥梁检测报告模板
- 2025年浪潮数字企业技术有限公司招聘笔试参考题库含答案解析
- 课时精讲14-物质的聚集状态与晶体的常识(学生版)
- 2025年全国普通话水平测试题标准试卷(共三十五套)
- 中华人民共和国各级人民代表大会常务委员监督法宣贯培训2024
- 血管导管相关感染预防与控制指南课件
评论
0/150
提交评论