版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届郑州市八年级数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE2.如图,在第一个中,,,在上取一点,延长到,使得,得到第二个;在上取一点,延长到,使得;…,按此做法进行下去,则第5个三角形中,以点为顶点的等腰三角形的顶角的度数为()A. B. C. D.3.如果一个等腰三角形的两条边长分别为3和7,那么这个等腰三角形的周长为()A.13 B.17 C.13或17 D.以上都不是4.如图,在△ABC中,AC的垂直平分线交AC于点E,交BC于点D,△ABD的周长为16cm,AC为5cm,则△ABC的周长为()A.24cm B.21cm C.20cm D.无法确定5.如图,△ABC与△关于直线MN对称,P为MN上任意一点,下列说法不正确的是()A. B.MN垂直平分C.这两个三角形的面积相等 D.直线AB,的交点不一定在MN上6.如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A. B. C. D.7.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样一个问题:“今天有开门去阔一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD和BC),门边缘D,C两点到门槛AB的距离是1尺,两扇门的间隙CD为2寸,则门宽AB长是()寸(1尺=10寸)A.101 B.100 C.52 D.968.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高是()A.1.6 B.1.4 C.1.5 D.29.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cm D.6cm,2cm,3cm10.已知,则a+b+c的值是()A.2 B.4 C.±4 D.±211.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.12.如图,中的周长为.把的边对折,使顶点和点重合,折痕交于,交于,连接,若,则的周长为__________;A.. B.. C.. D..二、填空题(每题4分,共24分)13.已知x=﹣2,y=1是方程mx+2y=6的一个解,则m的值为_____.14.如图,在中,,点和点在直线的同侧,,连接,则的度数为__________.15.规定一种新的运算:A★B=A×B-A÷B,如4★2=4×2-4÷2=6,则6★(-2)的值为______.16.如图,木工师傅在做完门框后,为防止变形常常如图中所示那样钉上两条斜拉的木条,这样做是运用了三角形的________.17.在Rt△ABC中,,,,则=_____.18.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.三、解答题(共78分)19.(8分)如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE=S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.20.(8分)选择适当的方法解下列方程.(1);(2).21.(8分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?22.(10分)已知,在中,,如图,点为上的点,若.(1)当时,求的度数;(2)当时,求的长;(3)当,时,求.23.(10分)已知.(1)化简;(2)当时,求的值;(3)若,的值是否存在,若存在,求出的值,若不存在,说明理由.24.(10分)如图,和相交于点,并且,.(1)求证:.证明思路现在有以下两种:思路一:把和看成两个三角形的边,用三角形全等证明,即用___________证明;思路二:把和看成一个三角形的边,用等角对等边证明,即用________证明;(2)选择(1)题中的思路一或思路二证明:.25.(12分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.26.甲乙两人同时登同一座山,甲乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙在提速前登山的速度是______米/分钟,乙在地提速时距地面的高度为__________米.(2)若乙提速后,乙比甲提前了9分钟到达山顶,请求出乙提速后和之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时甲距地的高度为多少米?
参考答案一、选择题(每题4分,共48分)1、D【分析】要使△ABD≌△ACE,则需对应边相等,夹角相等,可用两边夹一角,也可用两角夹一边判定全等.【详解】已知条件中AB=AC,∠A为公共角,A中∠B=∠C,满足两角夹一边,可判定其全等,A正确;B中AD=AE两边夹一角,也能判定全等,B也正确;C中∠BDC=∠CEB,即∠ADB=∠AEC,又∠A为公共角,∴∠B=∠C,所以可得三角形全等,C对;D中两边及一角,但角并不是夹角,不能判定其全等,D错.故选D.【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法,是正确解题的前提;做题时要按判定全等的方法逐个验证.2、A【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A5的度数.【详解】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠An=,以点A4为顶点的等腰三角形的底角为∠A5,则∠A5==5°,∴以点A4为顶点的等腰三角形的顶角的度数为180°-5°-5°=170°.故选:A.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.3、B【解析】当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故选B.4、B【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,
∴AD=DC,
∵△ABD的周长=AB+BD+AD=16,
∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=1.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.5、D【分析】根据轴对称的性质逐项判断即可得.【详解】A、P到点A、点的距离相等正确,即,此项不符合题意;B、对称轴垂直平分任意一组对应点所连线段,因此MN垂直平分,此项不符合题意;C、由轴对称的性质得:这两个三角形的面积相等,此项不符合题意;D、直线AB,的交点一定在MN上,此项符合题意;故选:D.【点睛】本题考查了轴对称的性质,掌握轴对称的性质是解题的关键.6、B【解析】利用平行线的性质以及折叠的性质,即可得到∠A1+∠A1DB=90°,即AB⊥CE,再根据勾股定理可得最后利用面积法得出可得进而依据A1C=AC=4,即可得到【详解】∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,∴∵∴又∵A1C=AC=4,∴故选B.【点睛】本题主要考查了折叠问题以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是得到CE⊥AB以及面积法的运用.7、A【分析】根据勾股定理列方程求出AO,即可得到结论.【详解】解:设单门的宽度AO是x尺,根据勾股定理,得x2=1+(x-0.1)2,解得x=5.05,故AB=2AO=10.1尺=101寸,故答案为:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.8、B【分析】根据勾股定理和三角形的面积公式即可得到结论.【详解】解:∵BC==5,∵S△ABC=4×4﹣×1×1﹣×3×4﹣×3×4=,∴△ABC中BC边上的高==,故选:B.【点睛】此题重点考查学生对勾股定理和三角形面积的理解,掌握勾股定理和三角形面积计算公式是解题的关键.9、A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A、2+3>4,能围成三角形;
B、1+2<4,所以不能围成三角形;
C、1+2=3,不能围成三角形;
D、2+3<6,所以不能围成三角形;
故选:A.【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10、D【分析】先计算(a+b+c)2,再将代入即可求解.【详解】∵∴∴=4∴a+b+c=±2故选:D【点睛】本题考查了代数式的求值,其中用到了.11、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.12、A【分析】由折叠可知DE是线段AC的垂直平分线,利用线段垂直平分线的性质可得结论.【详解】解:由题意得DE垂直平分线段AC,中的周长为所以的周长为22.故答案为:22.【点睛】本题考查了线段垂直平分线的性质,灵活利用线段垂直平分线上的点到线段两端的距离相等这一性质是解题的关键.二、填空题(每题4分,共24分)13、﹣2【分析】把x、y的值代入方程可得关于m的一元一次方程,解方程求出m的值即可得答案.【详解】把x=﹣2,y=1代入方程得:﹣2m+2=6,移项合并得:﹣2m=4,解得:m=﹣2,故答案为:﹣2【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14、30°【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出的度数,然后作点D关于直线AB的对称点E,连接BE、CE、AE,如图,则BE=BD,∠EBA=∠DB,∠BEA=∠BDA,进而可得∠EBC=60°,由于BD=BC,从而可证△EBC是等边三角形,可得∠BEC=60°,EB=EC,进一步即可根据SSS证明△AEB≌△AEC,可得∠BEA的度数,问题即得解决.【详解】解:∵,,∴,∵,∴,作点D关于直线AB的对称点E,连接BE、CE、AE,如图,则BE=BD,∠EBA=∠DBA=11°,∠BEA=∠BDA,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.15、-9【分析】根据新公式,A、B分别相当于6和-2,代入公式计算即可.【详解】6★(-2)===-9【点睛】本题考查有理数的混合运算,熟练掌握计算法则是解题关键.16、稳定性【分析】根据“防止变形”的目的,联系三角形的性质,可得出答案.【详解】由三角形的稳定性可知,钉上两条斜拉的木条,可以防止变形,故答案是运用了三角形的稳定性.【点睛】本题考查了三角形稳定性的实际应用,熟练掌握三角形的性质即可完成.17、1【分析】在Rt△ABC中,∠C=90°,则AB2=AC2+BC2,根据题目给出的AB,AC的长,则根据勾股定理可以求BC的长.【详解】∵AB=13,AC=12,∠C=90°,
∴BC=1.
故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.18、1【解析】试题分析:设10人桌x张,8人桌y张,根据题意得:10x+8y=80∵x、y均为整数,∴x=0,y=10或x=4,y=5或x=8,y=0共1种方案.故答案是1.考点:二元一次方程的应用.三、解答题(共78分)19、(1)y=3x+6;(2)存在,a=;(3)K点的位置不发生变化,K(0,﹣6)【分析】(1)首先确定B、C两点坐标,利用待定系数法即可解决问题;(2)由S△BDF=S△BDE可知只需DF=DE,即D为EF中点,联立解析式求出E、F两点坐标,利用中点坐标公式列出方程即可解决问题;(3)过点Q作QC⊥x轴,证明△BOP≌△PCQ,求出AC=QC,即可推出∠QAC=∠OAK=45°,即可解决问题.【详解】解:(1)∵直线y=﹣x+b与x轴交于A(6,0),∴0=﹣6+b,解得:b=6,∴直线AB的解析式是:y=﹣x+6,∴B(0,6),∴OB=6,∵OB:OC=3:1,∴OC=2,∴C(﹣2,0)设直线BC的解析式是y=kx+b,∴,解得,∴直线BC的解析式是:y=3x+6;(2)存在.理由:∵S△BDF=S△BDE,∴只需DF=DE,即D为EF中点,∵点E为直线AB与EF的交点,联立,解得:,∴点E(,),∵点F为直线BC与EF的交点,联立,解得:,∴点F(,),∵D为EF中点,∴,∴a=0(舍去),a=,经检验,a=是原方程的解,∴存在这样的直线EF,a的值为;(3)K点的位置不发生变化.理由:如图2中,过点Q作QC⊥x轴,设PA=m,∵∠POB=∠PCQ=∠BPQ=90°,∴∠OPB+∠QPC=90°,∠QPC+∠PQC=90°,∴∠OPB=∠PQC,∵PB=PQ,∴△BOP≌△PCQ(AAS),∴BO=PC=6,OP=CQ=6+m,∴AC=QC=6+m,∴∠QAC=∠OAK=45°,∴OA=OK=6,∴K(0,﹣6).【点睛】本题是一次函数综合题,考查了一次函数的性质,待定系数法求函数解析式,等腰直角三角形的判定和性质,全等三角形的判定和性质,解分式方程等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.20、(1);(2)【分析】(1)直接使用配方法解一元二次方程即可;(2)直接使用因式分解法解一元二次方程即可.【详解】解:(1)配方开方得,解得:;(2)因式分解得,(2x-3)(x-1)=0,2x-3=0或x-1=0,解得:.【点睛】本题考查了一元二次方程的解法,掌握并灵活运用配方法和因式分解法解一元二次方程是解答本题的关键.21、(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加1万平方米.【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×3+2(54+a)≥360解得:a≥1.答:则至少每年平均增加1万平方米.22、(1)∠CAD=55°;(2);(3)S△ABC=16【分析】(1)通过同角的余角相等,解得;(2)通过勾股定理求出AC的长,再利用三角形的面积公式求出AD的长;(3)通过等腰直角三角形的性质求出BC和AD的长度,即可求出△ABC的面积.【详解】(1)∵∴∵∴∴∴(2)∵∴在中,根据勾股定理得∵∴∴解得(3)∵,∴∴是等腰直角三角形∵∴AD垂直平分BC,∴,∴【点睛】本题考查了三角形的综合问题,掌握同角的余角相等、勾股定理以及三角形的面积公式是解题的关键.23、(1);(2)A=或;(3)不存在,理由见详解.【分析】(1)先把括号里面的通分,再计算整式除法即可;
(2)利用完全平方公式,求出x-y的值,代入化简后的A中,求值即可;
(3)利用非负数的和为0,确定x、y的关系,把x、y代入A的分母,判断A的值是否存在.【详解】解:(1)===;(2)∵x2+y2=13,xy=-6
∴(x-y)2=x2-2xy+y2=13+12=25
∴x-y=±5,当x-y=5时,A=;
当x-y=-5时,A=.(3)∵,∴x-y=0,y+2=0
当x-y=0时,
A的分母为0,分式没有意义.∴当时,A的值不存在.【点睛】本题考查了分式的加减乘除运算、完全平方公式、非负数的和及分式有无意义的条件.题目综合性较强.初中阶段学过的非负数有:a的偶次幂,a(a≥0)的偶次方根,a|的绝对值.24、(1);;(2)证明详见解析.【分析】(1)思路一:可通过证明,利用全等三角形对应边相等可得;思路二:可通过证明利用等角对等边可得;(2)任选一种思路证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公务员法培训
- 重庆市名校联盟2024-2025学年高二上学期11月期中考试 政治 含解析
- 《小企业培训》课件
- 2024年度度假区场地租赁合同文本
- 2024年度农产品仓储加工服务合同
- 2024年度学校标识标牌设计与购销合同
- 2024年度混凝土泵送工程质量保修与赔偿合同
- 2024年度版权购买合同:某影视公司购买某剧本的改编权
- 2024年度智能客服系统开发与运营外包合同
- 2024年度文艺演出场地租赁合同
- 食品检验检测技术专业职业生涯发展
- 抖音矩阵员工培训课件
- wifi模块行业分析
- 小学语文中高年级单元整体教学设计的实践研究(结题报告)
- 2025届高考语文复习:诗歌形象鉴赏之事物形象
- 住房保障社工述职报告
- 高速广告策划方案
- 知识产权维权授权书
- 第23课《孟子》三章《得道多助失道寡助》公开课一等奖创新教学设计统编版语文八年级上册
- HGT 20714-2023 管道及仪表流程图(P ID)安全审查规范 (正式版)
- 消毒供应中心标准预防与职业安全
评论
0/150
提交评论