2025届江苏省扬州市田家炳实验中学八年级数学第一学期期末联考试题含解析_第1页
2025届江苏省扬州市田家炳实验中学八年级数学第一学期期末联考试题含解析_第2页
2025届江苏省扬州市田家炳实验中学八年级数学第一学期期末联考试题含解析_第3页
2025届江苏省扬州市田家炳实验中学八年级数学第一学期期末联考试题含解析_第4页
2025届江苏省扬州市田家炳实验中学八年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省扬州市田家炳实验中学八年级数学第一学期期末联考试题联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.10名初中毕业生的中考体育考试成绩如下:25262626262728292930,这些成绩的中位数是()A.25 B.26 C.26.5 D.302.下列运算正确的是A. B. C. D.3.下列图标中,不是轴对称图形的是().A. B. C. D.4.在平面直角坐标系中,点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,126.如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个7.如图,小明从地出发,沿直线前进15米后向左转18°,再沿直线前进15米,又向左转18°⋯⋯,照这样走下去,他第一次回到出发地地时,一共走的路程是()A.200米 B.250米 C.300米 D.350米8.牛顿曾说过:“反证法是数学家最精良的武器之一.”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设()A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中每个内角都大于60°D.三角形中没有一个内角小于60°9.化简的结果是()A. B. C. D.10.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a5二、填空题(每小题3分,共24分)11.命题“如果,则,”的逆命题为____________.12.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角为_______.13.如图,把的一角折叠,若,则的度数为______.14.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).15.如图,△ABC≌△A′B′C′,其中∠A=46°,∠B′=27°,则∠C=_____°.16.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为_____.17.若不等式的正整数解是,则的取值范围是____.18.已知a+b=1,ab=,则a3b2a2b2ab3(__________).三、解答题(共66分)19.(10分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.20.(6分)运动会结束后八(1)班班主任准备购买一批明信片奖励积极参与运动会各个比赛项目的学生,计划用班费180元购买A、B两种明信片共20盒,已知A种明信片每盒12元,B种明信片每盒8元.(1)根据题意,甲同学列出了尚不完整的方程组如下:;请在括号内填上具体的数字并说出a,b分别表示的含义,甲:a表示__________,b表示_______________;(2)乙同学设了未知数但不会列方程,请你帮他把方程补充完整并求出该方程组的解;乙:x表示购买了A种明信片的盒数,y表示购买了B种明信片的盒数.21.(6分)解分式方程22.(8分)为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?23.(8分)如图,在平面直角坐标系中,点,;(1)作关于轴的对称图形(点、、的对应点分别是、、)(2)将向右平移2个单位长度,得到(点、、的对应点分别是、、)(3)请直接写出点的坐标.24.(8分)已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=1.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.25.(10分)如图,△ABC和都是等边三角形,求:(1)AE长;(2)∠BDC的度数:(3)AC的长.26.(10分)在综合实践课上,老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰三角形纸片ABC中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)特例感知当∠BPC=110°时,α=°,点P从B向A运动时,∠ADP逐渐变(填“大”或“小”).(2)合作交流当AP等于多少时,△APD≌△BCP,请说明理由.(3)思维拓展在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据中位数的定义即可得到结果.根据题意,将10名考生的考试成绩从小到大排列,找第1、6人的成绩为26,27,其平均数为(26+27)÷2=26.1,故这些成绩的中位数是26.1.故选C.考点:本题考查的是中位数点评:先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.2、A【解析】选项A,选项B,,错误;选项C,,错误;选项D,,错误.故选A.3、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,故本选项错误;

B、是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项正确;

D、是轴对称图形,故本选项错误.

故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、B【分析】根据各象限内点的坐标特征解答.第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】点在第二象限.故选B.【点睛】此题考查象限及点的坐标的有关性质,解题关键在于掌握其特征.5、B【解析】试题分析:解:A、∵52+62≠72,故不能围成直角三角形,此选项错误;C、∵12+42≠92,故不能围成直角三角形,此选项错误;B、∵52+122=132,能围成直角三角形,此选项正确;D、∵52+112≠122,故不能围成直角三角形,此选项错误.故选B.考点:本题考查了勾股定理的逆定理点评:此类试题属于基础性试题,考生直接一招勾股定理把各项带入验证即可6、D【分析】由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.【详解】解:∵△DAC和△EBC均是等边三角形,

∴AC=CD,BC=CE,∠ACD=∠BCE=60°,

∴∠ACD+∠DCE=∠BCE+∠DCE,

即∠ACE=∠BCD,

在△ACE和△DCB中,

∴△ACE≌△DCB(SAS),则①正确;

∴AE=BD,∠CAE=∠CDB,在ACM和△DCN中,,∴△ACM≌△DCN(ASA),∴CM=CN,;则②正确;∵∠MCN=60°,∴为等边三角形;则③正确;∵∠DAC=∠ECB=60°,∴AD∥CE,∴∠DAO=∠NEO=∠CBN,∴;则④正确;∴正确的结论由4个;故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,平行线的判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.7、C【分析】由题意可知小明所走的路线为一个正多边形,根据多边形的外角和进行分析即可求出答案.【详解】解:正多边形的边数为:360°÷18°=20,∴路程为:15×20=300(米).故选:C.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.8、C【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.【详解】解:用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设三角形中每个内角都大于60°,故选:C.【点睛】此题考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.9、D【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.10、A【分析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.二、填空题(每小题3分,共24分)11、若,则【分析】根据逆命题的定义即可求解.【详解】命题“如果,则,”的逆命题为若,,则故填:若,,则.【点睛】此题主要考查逆命题,解题的关键是熟知逆命题的定义.12、135°【分析】根据正多边形的内角和公式计算即可.【详解】∵八边形的内角和为(8-2)×180°=1080°,∴正八边形的每个内角为1080°÷8=135°,故答案为:135°.【点睛】本题考查了正多边形的内角和,掌握知识点是解题关键.13、65°【分析】根据折叠的性质得到∠3=∠5,∠4=∠6,利用平角的定义有∠3+∠5+∠1+∠2+∠4+∠6=360°,则2∠3+2∠4+∠1+∠2=360°,而∠1+∠2=130°,可计算出∠3+∠4=115°,然后根据三角形内角和定理即可得到∠A的度数.【详解】如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°.∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为65°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了折叠的性质.作出辅助线,把图形补充完整是解题的关键.14、①③【分析】①由已知条件证明DAB≌EAC即可;②由①可得ABD=ACE<45°,DCB>45°;③由ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°可判断③;④由BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1可判断④.【详解】解:∵DAE=BAC=90°,∴DAB=EAC,∵AD=AE,AB=AC,∴AED=ADE=ABC=ACB=45°,∵在DAB和EAC中,,∴DAB≌EAC,∴BD=CE,ABD=ECA,故①正确;由①可得ABD=ACE<45°,DCB>45°故②错误;∵ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°,∴CEB=90°,即CE⊥BD,故③正确;∴BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.∴BE1=1(AD1+AB1)-CD1,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.15、107【解析】根据全等三角形的性质求出∠B的度数,根据三角形内角和定理计算即可.【详解】∵△ABC≌△A′B′C′,

∴∠B=∠B′=27°,

∴∠C=180°-∠A-∠B=107°,

故答案为:107°.【点睛】本题考查的知识点是全等三角形的性质,解题关键是掌握全等三角形的对应边相等、全等三角形的对应角相等.16、40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.17、9≤a<1【分析】解不等式3x−a≤0得x≤,其中,最大的正整数为3,故3≤<4,从而求解.【详解】解:解不等式3x−a≤0,得x≤,∵不等式的正整数解是1,2,3,∴3≤<4,解得9≤a<1.故答案为:9≤a<1.【点睛】本题考查了一元一次不等式的解法.先解含字母系数的不等式,再根据正整数解的情况确定字母的取值范围.18、【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【详解】解:a3b−2a2b2+ab3,=ab(a2−2ab+b2),=ab(a−b)2,=ab[(a+b)2−4ab]把a+b=1,ab=代入得:原式=×(12−4×)=,故答案为:.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,熟练掌握运算法则是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1),a表示A种明信片的总价,b表示B种明信片的总价;(2)见解析.【分析】(1)从题意可得12、8分别两种明信片的单价,依等量关系式总价÷单价=数量可知a、b分别表示A、B两种明信片的总价,根据题意即可补充方程组;(2)设x表示购买了A种明信片的盒数,y表示购买了B种明信片的盒数.列出方程组,解方程组,作答即可.【详解】解:(1)从等量关系式入手分析,由“”、“”可知,12、8分别两种明信片的单价,而依等量关系式可知:总价÷单价=数量,便知a表示A种明信片的总价,b表示B种明信片的总价,则方程组补充为:(2)设x表示购买了A种明信片的盒数,y表示购买了B种明信片的盒数.列方程组得,解得,答:购买了A种明信片15盒,B种明信片5盒.【点睛】本题考查了列二元一次方程组解应用题,理解好题意,明确题目中数量关系是解题关键.21、【分析】先将方程两边同乘最简公分母,将分式方程化为整式方程求解,最后验根即可.【详解】解:方程两边同乘最简公分母,得:去括号整理得:解得:经检验,是原分式方程的解.【点睛】本题考查解分式方程,找到最简公分母将分式方程转化为整式方程是关键,注意分式方程最后需要验根.22、(1)原来每小时处理污水量是40m2;(2)需要16小时.【解析】试题分析:设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,根据原来处理1200m3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可.根据即可求出.试题解析:设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,根据题意得:去分母得:解得:经检验是分式方程的解,且符合题意,则原来每小时处理污水量是40m2;(2)根据题意得:(小时),则需要16小时.23、(1)详见解析;(2)详见解析;(3).【分析】(1)分别作出点、、关于x轴的对应点、、,再顺次连接即可;(2)分别作出点、、向右平移2个单位后的对应点、、,再顺次连接即可;(3)根据(2)题的结果直接写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)点的坐标是(1,﹣3).【点睛】本题考查了坐标系中作已知图形的轴对称图形和平移变换作图,属于基本作图题型,熟练掌握作对称点的方法和平移的性质是解题的关键.24、(1)证明见解析(2)答案见解析(3)8【解析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM与NE交于K,则∠MKN=181°﹣2∠ONE=91°﹣∠NEA,即2∠ONE﹣∠NEA=91°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=1∴|a﹣b|+(b﹣4)2=1∵|a﹣b|≥1,(b﹣4)2≥1∴|a﹣b|=1,(b﹣4)2=1∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△BAH中,∴△AOE≌△BAH(ASA)∴AH=OE在△ONE和△AMH中,∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=181°﹣2∠ONE=91°﹣∠NEA∴2∠ONE﹣∠NEA=91°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.25、(1);(2)150°;(3).【分析】(1)根据等边三角形的性质可利用SAS证明△BCD≌△ACE,再根据全等三角形的性质即得结果;(2)在△ADE中,根据勾股定理的逆定理可得∠AED=90°,进而可求出∠AEC的度数,再根据全等三角形的性质即得答案;(3)过C作CP⊥DE于点P,设AC与DE交于G,如图,根据等边三角形的性质和勾股定理可得PE与CP的长,进而可得AE=CP,然后即可根据AAS证明△AEG≌△CPG,于是可得AG=CG,PG=EG,根据勾股定理可求出AG的长,进一步即可求出结果.【详解】解:(1)∵△ABC和△EDC都是等边三角形,∴BC=AC,CD=CE=DE=2,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,在△BCD与△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE,∴AE=BD=;(2)在△ADE中,∵,∴DE2+AE2==AD2,∴∠AED=90°,∵∠DEC=60°,∴∠AEC=150°,∵△BCD≌△ACE,∴∠BDC=∠AEC=150°;(3)过C作CP⊥DE于点P,设AC与DE交于G,如图,∵△CDE是等边三角形,∴PE=DE=1,CP=,∴AE=CP,在△AEG与△CPG中,∵∠AEG=∠CPG=90°,∠AGE=∠CGP,AE=CP,∴△AEG≌△CPG,∴AG=CG,PG=EG=,∴AG=,∴AC=2AG=.【点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论