3-2-线性方程组解的结构_第1页
3-2-线性方程组解的结构_第2页
3-2-线性方程组解的结构_第3页
3-2-线性方程组解的结构_第4页
3-2-线性方程组解的结构_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

证必要性.,有解设方程组bAx=()(),BRAR<设则B的行阶梯形矩阵中最后一个非零行对应矛盾方程0=1,这与方程组有解相矛盾.()().BRAR=因此非齐次方程组的解法并令个自由未知量全取0,rn-即可得方程组的一个解.充分性.()(),BRAR=设()()(),nrrBRAR£==设证毕其余个作为自由未知量,把这

行的第一个非零元所对应的未知量作为非自由未知量,小结有唯一解bAx=()()nBRAR==Û()()nBRAR<=Û有无穷多解.bAx=非齐次线性方程组:增广矩阵化成行阶梯形矩阵,便可判断其是否有解.若有解,化成行最简形矩阵,便可写出其通解;证明1.非齐次线性方程组解的性质非齐次线性方程组解的性质证明证毕.其中为对应齐次线性方程组的通解,为非齐次线性方程组的任意一个特解.2.非齐次线性方程组的通解非齐次线性方程组Ax=b的通解为3.与方程组有解等价的命题线性方程组有解4.线性方程组的解法(1)应用克莱姆法则(2)利用初等变换特点:只适用于系数行列式不等于零的情形,计算量大,容易出错,但有重要的理论价值,可用来证明很多命题.特点:适用于方程组有唯一解、无解以及有无穷多解的各种情形,全部运算在一个矩阵(数表)中进行,计算简单,易于编程实现,是有效的计算方法.例4求解方程组解解例5求下述方程组的解所以方程组有无穷多解.且原方程组等价于方程组求基础解系令依次得求特解所以方程组的通解为故得基础解系另一种解法则原方程组等价于方程组所以方程组的通解为()()nBRAR==Û()()nBRAR<=Û有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论