版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省武汉市两学校八年级数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.等腰三角形的一个内角为50°,它的顶角的度数是()A.40° B.50° C.50°或40° D.50°或80°2.如果点与点关于轴对称,那么的值等于()A. B. C.l D.40393.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AB和AD,点A B.AB和AC,点BC.AC和BC,点C D.AD和BC,点D4.如图,一个梯形分成-一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是和,那么阴影部分的面积是()A. B. C. D.5.若函数是正比例函数,则的值是()A.-3 B.1 C.-7 D.36.下列语句正确的是()A.的平方根是 B.±3是9的平方根C.﹣2是﹣8的负立方根 D.的平方根是﹣27.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10° B.15° C.20° D.25°8.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F9.如图,D是线段AC、AB的垂直平分线的交点,若,,则的大小是A. B. C. D.10.下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C.25=±5 D.11.把一副三角板按如图叠放在一起,则的度数是A. B. C. D.12.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为D.5月到6月女生平均成绩比4月到5月的平均成绩增长快二、填空题(每题4分,共24分)13.如果一个数的平方根和它的立方根相等,则这个数是______.14.观察下列关于自然数的式子:,,,,,…,根据上述规律,则第个式子化简后的结果是_____.15.若直角三角形的一个锐角为25°,则另一锐角为________.16.中,,,,将它的一个锐角翻折,使该锐角顶点落在其对边的中点处,折痕交另一直角边于点,交斜边于点,则的周长为__________.17.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.18.在中,,则的度数是________°.三、解答题(共78分)19.(8分)综合与实践已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.(1)(问题发现)如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),①证明:△ADE≌△BDF;②猜想:S△DEF+S△CEF=S△ABC.(2)(类比探究)如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.(3)(拓展延伸)如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)20.(8分)在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:平均数(分)中位数(分)方差8(1)班m90n8(2)班919029请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;21.(8分)已知:如图,在△ABC中,AD⊥BC,垂足是D,E是线段AD上的点,且AD=BD,DE=DC.⑴求证:∠BED=∠C;⑵若AC=13,DC=5,求AE的长.22.(10分)如图,是等边三角形,点是的中点,,过点作,垂足为,的反向延长线交于点.(1)求证:;(2)求证:垂直平分.23.(10分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.24.(10分)先化简,再求值:,a取满足条件﹣2<a<3的整数.25.(12分)先化简再求值:,其中26.某商场销售两种品牌的足球,购买2个品牌和3个品牌的足球共需280元;购买3个品牌和1个品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:品牌足球按原价的九折销售,品牌足球10个以上超出部分按原价的七折销售.设购买个品牌的足球需要元,购买个品牌的足球需要元,分别求出,关于的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据50°是顶角的度数或底角的度数分类讨论,然后结合三角形的内角和定理即可得出结论.【详解】解:①若顶角的度数为50°时,此时符合题意;②若底角的度数为50°时,则等腰三角形的顶角为:180°-50°-50°=80°综上所述:它的顶角的度数是50°或80°故选D.【点睛】此题考查的是等腰三角形的性质和三角形的内角和定理,掌握等边对等角和分类讨论的数学思想是解决此题的关键.2、C【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点M(x,y)关于x轴的对称点M′的坐标是(x,-y),进而得出答案.【详解】解:∵点P(a,2019)与点Q(2020,b)关于x轴对称,
∴a=2020,b=-2019,
∴,
故选:C.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.3、D【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【详解】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:D.【点睛】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.4、B【分析】根据勾股定理解答即可.【详解】解:根据勾股定理得出:∴阴影部分面积是25,
故选:B.【点睛】此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.5、A【分析】根据正比例函数的性质可得,解得即可.【详解】解:根据正比例函数的性质可得.解得.故选:A.【点睛】此题主要考察了正比例函数的定义,解题的关键是掌握正比例函数的定义条件:,为常数且,自变量次数为1.6、B【分析】依据立方根、平方根定义和性质回答即可.【详解】解:A、2的平方根是,故A错误;B、±3是9的平方根,故B正确;C、﹣2是﹣8的立方根,故C错误;D、的平方根是±2,故D错误.故选:B.【点睛】本题考查的是平方根,立方根的含义,及求一个数的平方根与立方根,掌握以上知识是解题的关键.7、A【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.8、C【分析】根据三角形全等的判定定理等知识点进行选择判断.【详解】A、添加AC=DF,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠B=∠E,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;C、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;D、添加∠C=∠F,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;故选C.【点睛】本题主要考查你对三角形全等的判定等考点的理解.9、A【解析】利用线段的垂直平分线的性质可以得到相等的线段,进而可以得到相等的角,然后利用题目中的已知条件求解即可.【详解】解:是线段AC、AB的垂直平分线的交点,
,
,,
,,
,
,
故选A.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是根据线段的垂直平分线得到相等的线段.10、D【详解】解:A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、25=5,表示25的算术平方根式5,25≠±5,故本选项错误;D、3-8故选D.【点睛】本题考查立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法.11、A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,
∠α=∠1+∠B=135°+30°=165°.
故选A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12、C【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;
B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;
C.4月到5月,女生平均成绩的增长率为,此选项错误,符合题意;
D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;
故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.二、填空题(每题4分,共24分)13、1【解析】试题解析:平方根和它的立方根相等的数是1.14、【分析】由前几个代数式可得,减数是从2开始连续偶数的平方,被减数是从2开始连续自然数的平方的4倍,由此规律得出答案即可.【详解】∵①②③④⑤∴第个代数式为:.故答案为:.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解题的关键.15、1°【分析】根据直角三角形两锐角互余列式计算即可得解.【详解】∵直角三角形的一个锐角为25°,∴它的另一个锐角为90°-25°=1°.故答案为1.【点睛】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.16、20cm或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A和∠B两种情况求解即可.【详解】当∠B翻折时,B点与D点重合,DE与EC的和就是BC的长,即DE+EC=16cm,CD=AC=6cm,故△CDE的周长为16+6=22cm;当∠A翻折时,A点与D点重合.同理可得DE+EC=AC=12cm,CD=BC=8cm,故△CDE的周长为12+8=20cm.故答案为20cm或22cm.【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.17、如果两个角是同一个角的余角,那么这两个角相等【分析】根据“如果”后面接的部分是题设,“那么”后面解的部分是结论,即可解决问题.【详解】命题“同角的余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两个角相等.故答案为:如果两个角是同一个角的余角,那么这两个角相等.【点睛】本题考查命题与定理,解题的关键是掌握“如果”后面接的部分是题设,“那么”后面解的部分是结论.18、60【分析】用分别表示出,再根据三角形的内角和为即可算出答案.【详解】∵∴∴∴∴故答案为:60【点睛】本题考查了三角形的内角和,根据题目中的关系用分别表示出是解题关键.三、解答题(共78分)19、(1)①证明见解析;②;(2)上述结论成立;理由见解析;(3)不成立;S△DEF﹣S△CEF=;理由见解析.【分析】(1)①先判断出DE∥AC得出∠ADE=∠B,再用同角的余角相等判断出∠A=∠BDF,即可得出结论;②当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形,边长是AC的一半,即可得出结论;(2)成立;先判断出∠DCE=∠B,进而得出△CDE≌△BDF,即可得出结论;(3)不成立;同(2)得:△DEC≌△DBF,得出S△DEF==S△CFE+S△ABC.【详解】解:(1)①∵∠C=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴∠ADE=∠B,∵∠EDF=90°,∴∠ADE+∠BDF=90°,∵DE⊥AC,∴∠AED=90°,∴∠A+∠ADE=90°,∴∠A=∠BDF,∵点D是AB的中点,∴AD=BD,在△ADE和△BDF中,∴△ADE≌△BDF(SAS);②如图1中,当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形.设△ABC的边长AC=BC=a,则正方形CEDF的边长为a.∴S△ABC=a2,S正方形DECF=(a)2=a2,即S△DEF+S△CEF=S△ABC;故答案为:.(2)上述结论成立;理由如下:连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD,∴∠DCE=∠B,∠CDB=90°,∵∠EDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴S△DEF+S△CEF=S△ADE+S△BDF=S△ABC;(3)不成立;S△DEF﹣S△CEF=S△ABC;理由如下:连接CD,如图3所示:同(2)得:△DEC≌△DBF,∠DCE=∠DBF=135°∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+S△ABC,∴S△DEF﹣S△CFE=S△ABC.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.【点睛】本题是几何变换综合题,考查了平行线的判定和性质,同角的余角相等,全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全等是解决问题的关键.20、(1)详见解析;(2)1人;(3)从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【分析】(1)由8(2)班A级人数及其所占百分比可得两个班的人数,班级人数减去A、B级人数可求出C等级人数;
(2)班级人数乘以C等级对应的百分比可得其人数;
(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,
∴8(2)班参赛的人数为2÷20%=10(人),
∵8(1)和8(2)班参赛人数相同,
∴8(1)班参赛人数也是10人,
则8(1)班C等级人数为10-3-5=2(人),
补全图形如下:
(2)此次竞赛中8(2)班成绩为C级的人数为10×(1-20%-70%)=1(人),
故答案为:1.
(3)m=×(100×3+90×5+80×2)=91(分),
n=×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49,
∵8(1)班的优秀率为×100%=80%,8(2)班的优秀率为20%+70%=90%,
∴从优秀率看8(2)班更好;
∵8(1)班的方差大于8(2)班的方差,
∴从稳定性看8(2)班的成绩更稳定;
【点睛】此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.21、1【分析】(1)可以通过证明△ADC≌△BDE可得∠BED=∠C;(2)先根据勾股定理求出AD,由上一问△ADC≌△BDE可得ED=EC,AD=BD,即可求出AE.【详解】证明:(1)∵AD⊥BC,∴∠BDE=∠ADC=90°,∵在△ADC和△BDE中,,∴△ADC≌△BDE,∴∠BED=∠C.(2)∵∠ADC=90°,AC=13,DC=5,∴AD=12∵△BDE≌△ADC,DE=DC=5∴AE=AD-DE=12-5=1.【点睛】题目中出现较多的角相等,边相等可以考虑用三角形全等的方法解决问题.22、(1)见解析;(2)见解析【分析】(1)先证明≌得到,再根据等边三角形即可求解;(2)根据得到,得到△ABM是等腰三角形,根据三线合一即可求解.【详解】证明:(1)∵点是的中点∴∵∴在和中∴≌∴∴∴(2)∵点是等边中边的中点∴且平分∴,∵∴∴∴是等腰三角形又∵∴是中边的中线又∴垂直平分.【点睛】此题主要考查等边三角形的性质与证明,解题的关键是熟知全等三角形的判定、等边三角形的性质及垂直平分线的判定.23、证明见试题解析.【解析】试题分析:首先根据∠ACD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年黑龙江道路货运驾驶员从业资格证考试题库
- 服装公司总经理聘用合同模板
- 工程监理承包合同
- 农村考古遗址考古旅游开发合同
- 社区服务管理分层管理办法
- 2025劳动合同不续签处理
- 2024年度高品质钛矿出口贸易合同3篇
- 2024年物业管理招标申请文件3篇
- 陶艺馆租赁合同
- 食品文件生产流程
- 欧盟数据治理法案
- 墙面涂饰工程验收单
- 成人急性呼吸窘迫综合征患者清醒俯卧位护理专家共识
- 5G网络覆盖方案
- 小学生主题班会 忆伟人故事展少年风采-纪念伟大领袖毛主席诞辰130周年 课件(共33张PPT内嵌视频)
- (完整版)污水处理厂的水质检测PPT文档
- 教科版科学四年级上册第一单元《声音》单元作业设计
- 植物对水分的吸收和运输
- 工程量清单及招标控制价编制服务采购实施方案(技术标)
- 【日本碳市场发展综述2800字】
- 加拿大旅游签证材料清单(含申请表格)
评论
0/150
提交评论