2025届江苏省泰州市靖江市实验学校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2025届江苏省泰州市靖江市实验学校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2025届江苏省泰州市靖江市实验学校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2025届江苏省泰州市靖江市实验学校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2025届江苏省泰州市靖江市实验学校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省泰州市靖江市实验学校八年级数学第一学期期末质量跟踪监视模拟试题质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的()A. B. C. D.2.2019年被称为中国的5G元年,如果运用5G技术,下载一个2.4M的短视频大约只需要0.000048秒,将数字0.000048用科学记数法表示应为()A.0.48×10﹣4 B.4.8×10﹣5 C.4.8×10﹣4 D.48×10﹣63.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有()A.4种 B.3种 C.2种 D.1种4.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=7,点E在边BC上,并且CE=2,点F为边AC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.0.5 B.1 C.2 D.2.55.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A.1 B.2 C.3 D.46.已知,一次函数和的图像如图,则下列结论:①k<0;②a>0;③若≥,则≤3,则正确的个数是()A.0个 B.1个 C.2个 D.3个7.如图,在中,,按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交于点;②分别以点为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为()A.110° B.115° C.65° D.100°8.一组数据:,若增加一个数据,则下列统计量中,发生改变的是()A.方差 B.众数 C.中位数 D.平均数9.关于等腰三角形,有以下说法:(1)有一个角为的等腰三角形一定是锐角三角形(2)等腰三角形两边的中线一定相等(3)两个等腰三角形,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等(4)等腰三角形两底角的平分线的交点到三边距离相等其中,正确说法的个数为()A.个 B.个 C.个 D.个10.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4) B.(0,﹣5) C.(0,﹣6) D.(0,﹣7)二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,已知∠C=90°,∠CAB与∠CBA的平分线交于点G,分别与CB、CA边交于点D、E,GF⊥AB,垂足为点F,若AC=6,CD=2,则GF=______12.一次函数y=x﹣4和y=﹣3x+3的图象的交点坐标是_____.13.在△ABC中,已知AB=15,AC=11,则BC边上的中线AD的取值范围是____.14.化简:=_________.15.的算术平方根是_____.16.若直线与直线的图象交x轴于同一点,则之间的关系式为_________.17.一次函数与的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是______.18.已知一次函数与的函数图像如图所示,则关于的二元一次方程组的解是______.三、解答题(共66分)19.(10分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17=,12×14﹣6×20=,不难发现,结果都是.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.20.(6分)(1).(2)先化简,再求值:,其中.21.(6分)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.22.(8分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)23.(8分)如图,在平面直角坐标系中,点,点.(1)若点关于轴、轴的对称点分别是点、,请分别描出、并写出点、的坐标;(2)在轴上求作一点,使最小(不写作法,保留作图痕迹)24.(8分)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边长.25.(10分)已知:如图,在△ABC中,AB=2AC,过点C作CD⊥AC,交∠BAC的平分线于点D.求证:AD=BD.26.(10分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O.给出下列3个条件:①∠EBO=∠DCO;②AE=AD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定ΔABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据轴对称图形的定义即可判断.【详解】A、是轴对称图形,符合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:A.【点睛】本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.2、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数字0.000048用科学记数法表示应为4.8×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、C【分析】设有鸡只,有鸭只,根据收入共660元列方程,然后根据鸡鸭只数是正整数分析求解.【详解】设有鸡只,鸭只,根据题意,得

整理,得:,∴,∵、必须是正整数,∴,且必须是偶数,即为奇数,∴,且为奇数,则1,3,5,当时,,符合题意;

当时,,不是整数,不符合题意,舍去.

当时,,符合题意.所以,这背鸡鸭只数可能的方案有2种.

故选:C.【点睛】本题综合考查了二元一次方程的应用,能够根据不等式求得未知数的取值范围,从而分析得到所有的情况.4、A【分析】如图所示:当PE⊥AB.由翻折的性质和直角三角形的性质即可得到即可.【详解】如图所示:当PE⊥AB,点P到边AB距离的值最小.由翻折的性质可知:PE=EC=1.∵DE⊥AB,∴∠PDB=90°.∵∠B=30°,∴DE=BE=(7﹣1)=1.2,∴点P到边AB距离的最小值是1.2﹣1=0.2.故选:A.【点睛】此题参考翻折变换(折叠问题),直角三角形的性质,熟练掌握折叠的性质是解题的关键.5、D【分析】如图,①根据三角形的内角和即可得到∠DAE=∠F;②根据角平分线的定义得∠EAC=,由三角形的内角和定理得∠DAE=90°﹣∠AED,变形可得结论;③根据三角形的面积公式即可得到S△AEB:S△AEC=AB:CA;④根据三角形的内角和和外角的性质即刻得到∠AGH=∠BAE+∠ACB.【详解】解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+),=(180°﹣2∠ACE﹣∠BAC),=(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.【点睛】本题考查的知识点是关于角平分线的计算,利用三角形的内角和定理灵活运用角平分线定理是解此题的关键.6、C【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x3时,y1图象在y2的图象的上方.【详解】根据图示及数据可知:

①y1=kx+b的图象经过一、二四象限,则k<0,故①正确;

②y2=x+a的图象与y轴的交点在x轴的下方,a<0,故②错误;

③当x3时,y1图象在y2的图象的上方,则y1y2,故③正确.

综上,正确的个数是2个.

故选:C.【点睛】本题考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7、B【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后根据角平分线的性质可得,然后根据直角三角形的性质可得,所以.【详解】根据题意得,AG是∠CAB的角平分线∵∴∵∴∴故答案为:B.【点睛】本题考查了三角形的角度问题,掌握角平分想的性质以及直角三角形的性质是解题的关键.8、A【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【详解】解:A、原来数据的方差=[(0-2)2+(1-2)2+2×(2-2)2+(3-2)2+(4-2)2]=,添加数字2后的方差=[(0-2)2+(1-2)2+3×(2-2)2+(3-2)2+(4-2)2]=,故方差发生了改变;B、原来数据的众数是2,添加数字2后众数仍为2,故B与要求不符;C、原来数据的中位数是2,添加数字2后中位数仍为2,故C与要求不符;D、原来数据的平均数是2,添加数字2后平均数仍为2,故D与要求不符;故选A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.9、B【分析】由题意根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:(1)如果的角是底角,则顶角等于88°,此时三角形是锐角三角形;如果的角是顶角,则底角等于67°,此时三角形是锐角三角形,此说法正确;(2)当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,所以等腰三角形的两条中线不一定相等,此说法错误;(3)若两个等腰三角形的腰相等,腰上的高也相等.则这两个等腰三角形不一定全等,故此说法错误;(4)等腰三角形两底角的平分线的交点到三边距离相等,故此说法正确;综上可知(1)、(4)正确.故选:B.【点睛】本题考查全等三角形的判定和等腰三角形的性质以及三角形的内角和,熟练掌握各知识点是解题的关键.10、C【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB==5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.二、填空题(每小题3分,共24分)11、【分析】过G作GM⊥AC于M,GN⊥BC于N,连接CG,根据角平分线的性质得到GM=GM=GF,根据三角形的面积公式列方程即可得到结论.【详解】解:过G作GM⊥AC于M,GN⊥BC于N,连接CG,

∵GF⊥AB,∠CAB与∠CBA的平分线交于点G,

∴GM=GM=GF,

在Rt△ABC中,∠C=90°,

∴S△ACD=AC•CD=AC•GM+CD•GN,

∴6×2=6•GM+2×GN,

∴GM=,

∴GF=,

故答案为【点睛】本题考查了角平分线的性质,三角形的面积,正确的作出辅助线是解题的关键.12、(2,﹣3)【分析】两条一次函数的解析式联立方程组求解即可.【详解】解:方程组,解得,所以交点坐标为(2,﹣3).故答案为(2,﹣3).【点睛】本题考查了两条直线相交或平行问题,解题的关键是正确的解出方程组的解.13、2<AD<1【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<1;故答案为:2<AD<1.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.14、19﹣6.【分析】利用完全平方公式计算.【详解】原式=18﹣6+1=19﹣6.故答案为19﹣6.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15、2【详解】∵,的算术平方根是2,∴的算术平方根是2.【点睛】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.16、2p+3q=1.【解析】根据图象与x轴交点求法得出直线y=3x+p与直线y=-2x+q的图象与x轴交点,进而利用两式相等得出答案即可.【详解】解:∵直线y=3x+p与直线y=-2x+q的图象交x轴于同一点,

∴当y=1得出1=3x+p,当y=1得出1=-2x+q,整理得出:2p+3q=1,

故答案为:2p+3q=1.17、【解析】把代入,得,得出两直线的交点坐标为(1,2),从而得到方程组的解。【详解】解:把代入,得,则函数和的图象交于点,即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是故答案为:【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18、【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是:.故答案为:.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.三、解答题(共66分)19、(1)1,1,1;(2)证明见解析.【分析】(1)直接利用已知数据计算求出即可;(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7,列式计算即可得出结论.【详解】(1)9×11﹣3×17=1,12×14﹣6×20=1,不难发现,结果都是:1.故答案为:1,1,1.(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7则(x﹣1)·(x+1)﹣(x﹣7)·(x+7)===1.【点睛】本题考查了整式的混合运算,正确发现数字之间的变化规律是解答本题的关键.20、(1)4;(2),【分析】(1)本题按照先算乘方,再算多项式乘法,最后再算加减法的顺序即可完成;(2)本小题是关于分式的化简求值,先计算除法,注意分式的分子分母能因式分解的先因式分解,以便进行约分,然后进行分式的加减,在化成最简分式后,将代入即可求得.【详解】解:(1)原式=(2)原式当x=2时,【点睛】(1)本小题主要考查的是整式的混合运算,掌握非零的数的零次幂、负整数指数幂的计算等解题的关键,去括号时符号的变化是解题中的易错点;(2)本小题主要考查的是分式的运算,掌握分式混合运算的顺序是解题的关键.21、(1)S=;(2)y=﹣x+;(3)s=﹣m+,(0≤m≤),Q(0,).【分析】(1)根据点P坐标可得OB的长,根据含30°角的直角三角形的性质及勾股定理可求出OA的长,即可求出△ABC的面积;(2)设AB的解析式y=kx+b,把A(1,0),B(0,)代入列方程组即可求出b、k的值,进而可得直线AB解析式;(3)设移动过程中,AB与x轴的交点为D,可得OB=-m,根据含30°角的直角三角形的性质可用m表示出OD的长,即可得出s关于m的关系式,把m=0代入即可求出点Q坐标.【详解】∵与m轴相交于点P(,0),∴m=时,s=0,∴OB=,∵∠ABC=30°,∴AB=2OA,∴OA2+OB2=AB2,即OA2+3=4OA2,解得:OA=1,(负值舍去)∴S△ABC==.(2)∵B(0,),A(1,0),设AB的解析式y=kx+b,∴,∴,∴y=﹣x+;(3)设移动过程中,AB与x轴的交点为D,∵OB=,平移的距离为m,∴平移后OB=﹣m,∵∠ABC=30°,∴BD=2OD,∴OD2+OB2=BD2,即OD2+(﹣m)2=4OD2∴OD=1﹣m,∵s在第一象限,OB=,∴0≤m≤,∴s=×(﹣m)×(1﹣m)=﹣m+(0≤m≤),当m=0时,s=,∴Q(0,).【点睛】本题考查含30°角的直角三角形的性质、待定系数法求一次函数解析式及勾股定理,熟练掌握30°角所对的直角边等于斜边的一半的性质是解题关键.22、见解析【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)作点B关于x轴的对称点B',然后连接AB',与x轴的交点即为点P.【详解】(1)如图所示:(2)如图所示:.23、(1)点坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论