2025届重庆市渝中学区数学八上期末考试模拟试题含解析_第1页
2025届重庆市渝中学区数学八上期末考试模拟试题含解析_第2页
2025届重庆市渝中学区数学八上期末考试模拟试题含解析_第3页
2025届重庆市渝中学区数学八上期末考试模拟试题含解析_第4页
2025届重庆市渝中学区数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市渝中学区数学八上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有().A.3个 B.2个 C.1个 D.0个2.已知关于的分式方程的解是非正数,则的取值范围是()A. B.且 C. D.且3.如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,若S△ABC=12,DF=2,AC=3,则AB的长是()A.2 B.4 C.7 D.94.若关于的分式方程有增根,则的值是()A. B. C. D.5.下列等式正确的是()A. B. C. D.6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm7.若分式的值为0,则x的值为()A.0 B.-1 C.1 D.28.如图,在四边形ABCD中,,,,.分别以点A、C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A. B.4 C.3 D.9.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形10.若三角形的三边长分别为x、2x、9,则x的取值范围是()A.3<x<9 B.3<x<15 C.9<x<15 D.x>15二、填空题(每小题3分,共24分)11.新定义:[a,b]为一次函数(a≠0,,a、b为实数)的“关联数”.若“关联数”为[3,m-2]的一次函数是正比例函数,则点(1-m,1+m)在第_____象限.12.若等腰三角形的两边长为10,6,则周长为______.13.如果一个数的算术平方根等于它本身,那么这个数是___________.14.已知a2-2ab+b2=6,则a-b=_________.15.如果关于的不等式只有4个整数解,那么的取值范围是________________________。16.已知实数,0.16,,,其中为无理数的是_________.17.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若,则的度数为__________.18.因式分解x-4x3=_________.三、解答题(共66分)19.(10分)如图1,在中,,,直线经过点,且于点,于点.易得(不需要证明).(1)当直线绕点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时之间的数量关系,并说明理由;(2)当直线绕点旋转到图3的位置时,其余条件不变,请直接写出此时之间的数量关系(不需要证明).20.(6分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?21.(6分)如图,已知点在同一直线上,∥,且,,求证:∥.22.(8分)已知如图,长方体的长,宽,高,点在上,且,一只蚂蚁如果沿沿着长方体的表面从点爬到点,需要爬行的最短距离是多少?23.(8分)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进1.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.2米,乙组平均每天能比原来多掘进1.3米.按此旄工进度,能够比原来少用多少天完成任务?24.(8分)数学课上有如下问题:如图,已知点C是线段AB上一点,分别以AC和BC为斜边在同侧作等腰直角△ACD和等腰直角△BCE,点P是线段AB上一个动点(不与A、B、C重合),连接PD,作∠DPQ=90°,PQ交直线CE于点Q.(1)如图1,点P在线段AC上,求证:PD=PQ;(2)如图2,点P在线段BC上,请根据题意补全图2,猜想线段PD、PQ的数量关系并证明你的结论.小明同学在解决问题(1)时,提出了这样的想法:如图3,先过点P作PF⊥AC交CD于点F,再证明△PDF≌△PQC……请你结合小明同学的想法,完成问题(1)(2)的解答过程.25.(10分)如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.26.(10分)(1)在中,,(如图1),与有怎样的数量关系?试证明你的结论.(2)图2,在四边形中,相于点,,,,,求长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】3+3=6,错误,无法计算;②=1,错误;③+==2不能计算;④=2,正确.故选A.2、B【分析】根据题意,先解方程求出x=m-3,方程的解是一个非正数,则m-3≤0,且当x+1=0时即m-2=0方程无解,因此得解.【详解】解:去分母得:m-2=x+1,移项得:x=m-3由方程的解是非正数得:m-3≤0且m-3+1≠0解得:m≤3且≠2【点睛】本题考查的是利用分式方程的解来解决其中的字母的取值范围问题,一定要考虑到分式方程必须有意义.3、D【解析】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=×AB×DE+×AC×DF,∴24=AB×2+3×2,∴AB=9,故选D.4、C【分析】分式方程去分母转化为整式方程,将x=1代入计算即可求出m的值.【详解】解:分式方程去分母得:,将x=1代入的:m=-2,故选C.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.5、B【分析】根据二次根式的性质逐一进行判断即可得出答案.【详解】A.,故该选项错误;B.,故该选项正确;C.,故该选项错误;D.,故该选项错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.6、A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7、B【详解】解:依题意得,x+1=2,解得x=-1.当x=-1时,分母x+2≠2,即x=-1符合题意.故选B.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.8、A【分析】连接FC,先说明∠FAO=∠BCO,由OE垂直平分AC,由垂直平分线的性质可得AF=FC,再证明△FOA≌△BOC,可得AF=BC=3,再由等量代换可得FC=AF=3,然后利用线段的和差求出FD=AD-AF=1.最后在直角△FDC中利用勾股定理求出CD即可.【详解】解:如图,连接FC,∵由作图可知∴AF=FC,∵AD//BC,∴∠FAO=∠BCO,在△FOA与△BOC中,∠FAO=∠BCO,OA=OC,∠AOF=∠COB∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD-AF=4-3=1.在△FDC中,∠D=90°,∴CD2+DF2=FC2,即CD2+12=32,解得CD=.故答案为A.【点睛】本题主要考查了勾股定理、线段垂直平分线的判定与性质、全等三角形的判定与性质,运用全等三角形的性质求得CF和DF是解答本题的关键.9、B【分析】根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.10、A【分析】根据三角形的三边关系列出不等式组即可求出x的取值范围.【详解】∵一个三角形的三边长分别为x,2x和1,∴,∴3<x<1.故选:A.【点睛】考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题3分,共24分)11、二.【分析】根据新定义列出一次函数解析式,再根据正比例函数的定义确定m的值,进而确定坐标、确定象限.【详解】解:∵“关联数”为[3,m﹣2]的一次函数是正比例函数,∴y=3x+m﹣2是正比例函数,∴m﹣2=0,解得:m=2,则1﹣m=﹣1,1+m=3,故点(1﹣m,1+m)在第二象限.故答案为:二.【点睛】本题属于新定义和正比例函数的定义,解答的关键运用新定义和正比例函数的概念确定m的值.12、26或1【分析】题目给出等腰三角形有两条边长为10和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若10为腰长,6为底边长,符合三角形的两边之和大于第三边,∴周长=10+10+6=26;(2)若6为腰长,10为底边长,符合三角形的两边之和大于第三边,∴周长=6+6+10=1.故答案为:26或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13、0或1.【解析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可解决问题.【详解】∵1的算术平方根为1,0的算术平方根0,所以算术平方根等于他本身的数是0或1.故答案为:0或1.【点睛】此题主要考查了算术平方根的定义和性质,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.14、【解析】由题意得(a-b)2="6,"则=15、−5<a⩽−.【解析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,在确定字母的取值范围即可.【详解】,由①得:x<21,由②得:x>2−3a,不等式组的解集为:2−3a<x<21∵不等式组只有4个整数解为20、19、18、17∴16⩽2−3a<17∴−5<a⩽−.故答案为:−5<a⩽−.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握不等式组的运算法则.16、【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,即可判定.【详解】由已知,得其中为无理数的是,故答案为.【点睛】此题主要考查对无理数的理解,熟知概念,即可解题.17、【分析】延长AB交CF于E,求出∠ABC,根据平行线性质得出∠AEC=∠2=25°,再根据三角形外角性质求出∠1即可.【详解】解:如图,延长AB交CF于E,

∵∠ACB=90°,∠A=30°,

∴∠ABC=60°,

∵GH∥EF,

∴∠AEC=∠2=25°,

∴∠1=∠ABC-∠AEC=35°.

故答案为:35°.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.18、.【分析】先提取公因式,然后再用平方差公式进行因式分解即可.【详解】解:故答案为:.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握平方差公式和完全平方公式的结构正确计算是本题的解题关键.三、解答题(共66分)19、(1)不成立,DE=AD-BE,理由见解析;(2)DE=BE-AD【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;

(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.【详解】(1)不成立.

DE、AD、BE之间的数量关系是DE=AD-BE,理由如下:如图,

∵∠ACB=90°,BE⊥CE,AD⊥CE,,

∴∠ACD+∠CAD=90°,

又∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ACD和△CBE中,,

∴△ACD≌△CBE(AAS),

∴AD=CE,CD=BE,

∴DE=CE-CD=AD-BE;(2)结论:DE=BE-AD.

∵∠ACB=90°,BE⊥CE,AD⊥CE,,

∴∠ACD+∠CAD=90°,

又∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ACD和△CBE中,,∴△ADC≌△CEB(AAS),

∴AD=CE,DC=BE,

∴DE=CD-CE=BE-AD.【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.20、今年1—5月份每辆车的销售价格是4万元.【解析】设今年1—5月份每辆车的销售价格是x万元,根据销售量相同列出方程,求解并检验即可.【详解】解:设今年1—5月份每辆车的销售价格是x万元,依题意得.解得.经检验,是原方程的解,并且符合题意.答:今年1—5月份每辆车的销售价格是4万元.【点睛】本题考查分式方程的应用,理解题意并找到合适的等量关系是解题关键.21、证明见解析.【分析】先由两线段平行推出同位角相等,再由全等三角形推出对应角相等,接着由同位角相等反推出两线段平行.【详解】证明:∵∥,∴,∵,∴即,在△ABC和△DEF中,,∴△ABC≌△DEF,∴,∴∥.【点睛】本题考查全等三角形的性质和判定.本题较为简单,难度不大,只需证明出两个三角形全等,即可证明出其对应的角相等.22、需要爬行的最短距离是cm.【分析】将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM;或将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM;或将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM;再分别在Rt△ADM、Rt△ABM、Rt△ACM中,利用勾股定理求得AM的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM,如图1,由题意可得:MD=MC+CD=5+10=15cm,AD=15cm,在Rt△ADM中,根据勾股定理得:AM=cm;将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM,如图2,由题意得:BM=BC+MC=5+15=20cm,AB=10cm,在Rt△ABM中,根据勾股定理得:AM=cm,将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM,如图3,由题意得:AC=AB+CB=10+15=25cm,MC=5cm,在Rt△ACM中,根据勾股定理得:AM=cm,∵,,,∴,则需要爬行的最短距离是cm.【点睛】此题考查了最短路径问题,利用了转化的思想,解题的关键是将立体图形展开为平面图形,利用勾股定理求解.23、(1)甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米;(2)少用11天完成任务.【分析】(1)设甲、乙班组平均每天掘进x米,y米,根据已知甲组比乙组平均每天多掘进1.6米,经过5天施工,两组共掘进了45米两个关系列方程组求解.(2)由(1)和在剩余的工程中,甲组平均每天能比原来多掘进1.2米,乙组平均每天能比原来多掘进1.3米分别求出按原来进度和现在进度的天数,即求出少用天数.【详解】(1)设甲、乙班组平均每天掘进x米,y米,得,解得.∴甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=(1755﹣45)÷(4.8+4.2)=191(天)b=(1755﹣45)÷(4.8+1.2+4.2+1.3)=181(天)∴a﹣b=11(天)∴少用11天完成任务.【点睛】此题考查的知识点是二元一次方程组的应用,解题的关键是根据已知找出相等关系列方程组求解,然后由已知和所求原来进度求出少用天数.24、(1)见解析;(2)见解析【分析】(1)先过点P作PF⊥AC交CD于点F,再证明△PDF≌△PQC即可得到结论;(2)过点P作PF⊥BC交CE的延长线于点F,再证明△PDC≌△PQF即可得到结论.【详解】(1)证明:过点P作PF⊥AC交CD于点F,如图,∵△ACD和△BCE均为等腰直角三角形,∴∠ACD=∠BCE=45°,∴∠PFC=45°,PF=PC∴∠PFD=135°,∠PCQ=180°-45°=135°,∴∠PFD=∠PCQ∵DP⊥PQ,PF⊥PC∴∠DPF+∠FPQ=∠CPQ+∠QPF=90°,∴∠DPF=∠QPC,在△DPF和△QPC中,∴△DPF≌△QPC∴PD=PQ;(2)过点P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论