版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省阜宁县八年级数学第一学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列计算正确的是()A. B.C. D.2.若分式的值为0,则x的值为()A.0 B.1 C.﹣1 D.±13.如图,,,三点在同一条直线上,,,添加下列条件,不能判定的是()A. B. C. D.4.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①,两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,或其中正确的结论有()A.个 B.个 C.个 D.个5.无论取什么数,总有意义的分式是()A. B. C. D.6.若将,,,四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A. B. C. D.7.下列各点在函数的图象上的点的是()A. B. C. D.8.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.0.5 B.1 C.0.25 D.29.二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣210.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.12.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.13.分解因式:__.14.如图,平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点B的坐标为(10,6),点P为BC边上的动点,当△POA为等腰三角形时,点P的坐标为_________.15.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.16.如图,平面直角坐标系中的两个点,过C作轴于B,过B作交y轴于D,且,分别平分,,则的度数为______________________.17.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.
18.如图,在△ABC中,AB=AC,AB的垂直平分线DE交CA的延长线于点E,垂足为D,∠C=26°,则∠EBA=_____°.三、解答题(共66分)19.(10分)为了了解某校学生对于以下四个电视节目:A《最强大脑》、B《中国诗词大会》、C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图,请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)在扇形统计图中,A部分所占圆心角的度数是;(3)请将条形统计图和扇形统计图补充完整;(4)若该校有学生3000人,请根据上述调查结果估计该校喜欢电视节目A的学生人数.20.(6分)某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)21.(6分)织金县某中学300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这300名学生共植树多少棵?22.(8分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP=cm,CQ=cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?23.(8分)(1)化简(2)先化简,再求值,其中x为整数且满足不等式组.24.(8分)如图,在等边中,厘米,厘米,如果点以厘米的速度运动.(1)如果点在线段上由点向点运动.点在线段上由点向点运动,它们同时出发,若点的运动速度与点的运动速度相等:①经过“秒后,和是否全等?请说明理由.②当两点的运动时间为多少秒时,刚好是一个直角三角形?(2)若点的运动速度与点的运动速度不相等,点从点出发,点以原来的运动速度从点同时出发,都顺时针沿三边运动,经过秒时点与点第一次相遇,则点的运动速度是__________厘米秒.(直接写出答案)25.(10分)如图所示,在正方形网格中,若点的坐标是,点的坐标是,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C的坐标.(2)在图中作出△ABC关于x轴对称的△A1B1C1.26.(10分)在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:①1条对称轴;②2条对称轴;③4条对称轴.
参考答案一、选择题(每小题3分,共30分)1、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案.【详解】A.,故此项错误;B.,故此项错误;C.,故此项正确;D.,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.2、B【解析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式的值为零,∴,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.3、D【分析】根据全等三角形的判定的方法,即可得到答案.【详解】解:∵,,A、,满足HL的条件,能证明全等;B、,得到,满足ASA,能证明全等;C、,得到,满足SAS,能证明全等;D、不满足证明三角形全等的条件,故D不能证明全等;故选:D.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握证明三角形全等的几种方法.4、C【分析】由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t,可得出答案.【详解】图象可知、两城市之间的距离为,甲行驶的时间为小时,而乙是在甲出发小时后出发的,且用时小时,即比甲早到小时,故①②都正确;设甲车离开城的距离与的关系式为,把代入可求得,,设乙车离开城的距离与的关系式为,把和代入可得,解得,,令可得:,解得,即甲、乙两直线的交点横坐标为,此时乙出发时间为小时,即乙车出发小时后追上甲车,故③正确;令,可得,即,当时,可解得,当时,可解得,又当时,,此时乙还没出发,当时,乙到达城,;综上可知当的值为或或或时,两车相距千米,故④不正确;综上可知正确的有①②③共三个,故选:C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.5、B【分析】根据分式有意义的条件,分别进行判断,即可得到答案.【详解】解:A、当时,无意义,故A错误;B、∵,则总有意义,故B正确;C、当时,无意义,故C错误;D、当时,无意义,故D错误;故选:B.【点睛】本题考查了分式有意义的条件,分式无意义的条件,解题的关键是熟练掌握分母不等于0,则分式有意义.6、B【分析】先估算出各数,再根据实数与数轴的关系即可得出结论.【详解】是负数,在原点的左侧,不符合题意;,所以23,符合题意;是负数,在原点的左侧,不符合题意;,即3,在墨迹覆盖处的右边,不符合题意.故选:B.【点睛】本题考查了实数与数轴,熟知实数与数轴上的点的一一对应关系是解答本题的关键.7、C【分析】先将四项各点的横坐标代入函数的解析式,求出其对应的纵坐标,然后逐项判断即可.【详解】A、令代入得,,此项不符题意B、令代入得,,此项不符题意C、令代入得,,此项符合题意D、令代入得,,此项不符题意故选:C.【点睛】本题考查了一次函数的图象与性质,掌握理解函数的图象与性质是解题关键.8、A【分析】过P作PM∥BC,交AC于M,则△APM也是等边三角形,在等边三角形△APM中,PE是AM上的高,根据等边三角形三线合一的性质知AE=EM;易证得△PMD≌△QCD,则DM=CD;此时发现DE的长正好是AC的一半,由此得解.【详解】过P作PM∥BC,交AC于M;∵△ABC是等边三角形,且PM∥BC,∴△APM是等边三角形,又∵PE⊥AM,∴;(等边三角形三线合一)∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q;又∵PA=PM=CQ,在△PMD和△QCD中,∴△PMD≌△QCD(AAS),∴,∴,故选A.【点睛】此题考查了平行线的性质、等边三角形的性质、全等三角形的判定和性质;能够正确的构建出等边三角形△APM是解答此题的关键.9、D【分析】根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.【详解】由题意,得2x+4≥0,解得x≥-2,故选D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.10、A【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+2b=m,代入计算即可得到结果.【详解】设小长方形的长为a,宽为b,
上面的长方形周长:2(m-a+n-a),下面的长方形周长:2(m-2b+n-2b),
两式联立,总周长为:2(m-a+n-a)+2(m-2b+n-2b)=4m+4n-4(a+2b),
∵a+2b=m(由图可得),
∴阴影部分总周长为4m+4n-4(a+2b)=4m+4n-4m=4n.
故选:A.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.12、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】,是等腰三角形,度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).13、.【解析】直接利用平方差公式进行分解即可.【详解】原式,故答案为:.【点睛】本题主要考查了公式法分解因式,熟练掌握平方差公式是解题的关键.14、(2,6)、(5,6)、(8,6)【解析】当PA=PO时,根据P在OA的垂直平分线上,得到P的坐标;当OP=OA=10时,由勾股定理求出CP即可;当AP=AO=10时,同理求出BP、CP,即可得出P的坐标.【详解】当PA=PO时,P在OA的垂直平分线上,P的坐标是(5,6);当OP=OA=10时,由勾股定理得:CP==8,P的坐标是(8,6);当AP=AO=10时,同理BP=8,CP=10-8=2,P的坐标是(2,6).故答案为(2,6),(5,6),(8,6).【点睛】本题主要考查对矩形的性质,等腰三角形的性质,勾股定理,坐标与图形的性质等知识点的理解和掌握,能求出所有符合条件的P的坐标是解此题的关键.15、(4,6)或(4,0)【解析】试题分析:由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的纵坐标可能的情况试题解析:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3-3=0,∴B点的坐标为(4,0)或(4,6).考点:点的坐标.16、45°【分析】连接AD,根据角平分线的定义得到AE,DE分别平分∠CAB,∠ODB,得到∠EAO+∠EDO=45°,根据三角形内角和定理计算即可.【详解】连接AD,如图所示:
∵BD∥AC,
∴∠BAC=∠ABD,
∵∠ABD+∠ODB=90°,
∴∠BAC+∠ODB=90°,
∵AE,DE分别平分∠CAB,∠ODB,
∴,
∴,
∵∠AED+∠EAD+∠EDA=180°,即∠AED+∠EAO+∠OAD+∠EDO+∠ODA=180°,
∵∠OAD+∠ODA=90°,
∴∠AED+45°+90°=180°,
∴∠AED=45°.故答案为:45°.【点睛】本题考查平行线的性质,坐标与图形,三角形内角和定理,直角三角形两锐角互余等.熟练掌握相关定理,能得出角度之间的关系是解题关键.17、100°【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO交AC于E,∵∠A=50°,∠ABO=20°,
∴∠1=∠A+∠ABO=50°+20°=70°,
∵∠ACO=30°,
∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.18、1【分析】先根据等边对等角求得∠ABC=∠C=26°,再利用三角形的外角的性质求得∠EAB=1°,再根据垂直平分线的性质得:EB=EA,最后再运用等边对等角,即可解答.【详解】解:∵AB=AC,∴∠ABC=∠C=26°,∵∠EAB=∠ABC+∠C=1°,∵DE垂直平分AB,∴EB=EA,∴∠EBA=∠EAB=1°,故答案为1.【点睛】本题考查了等腰三角形和垂直平分线的性质,其中掌握等腰三角形的性质是解答本题的关键.三、解答题(共66分)19、(1)120人;(2)54°;(3)见解析;(4)450人【分析】(1)根据选B的人数及所占的百分比进行求解;(2)将360°乘以A部分所占的百分比即可;(3)先求出选C部分的人数与A部分所占的百分比,进而可将条形统计图和扇形统计图补充完整;(4)将总人数乘以A部分所占的百分比即可.【详解】解:(1)66÷55%=120(人),∴本次调查的学生有120人;(2)A部分所占圆心角的度数为:,故答案为:54°;(3)选C部分的人数为:120×25%=30(人),A部分所占的百分比为:1-(55%+25%+5%)=15%;(4)3000×15%=450(人);∴该校喜欢电视节目A的学生人数估计有450人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.20、3vkm/h【分析】设提速前列车的平均速度为,则依题意可得等量关系:提速前行驶150千米所用的时间提速后行驶千米所用的时间,根据等量关系列出方程即可.【详解】解:设提速前列车的平均速度为,则依题意列方程得,解得:,经检验,是原分式方程的解,答:提速前列车的平均速度为.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.21、(1)20(人),2(人);(2)众数是1,中位数是1.(3)估计这300名学生共植树1190棵.【解析】(1)根据B组人数,求出总人数即可解决问题.(2)根据众数,中位数的定义即可解决问题.(3)利用样本估计总体的思想解决问题即可.【详解】解:(1)总人数=8÷40%=20(人),D类人数=20×10%=2(人).(2)众数是1,中位数是1.(3)(棵),1.3×300=1190(棵).答:估计这300名学生共植树1190棵.【点睛】本题考查条形统计图,扇形统计图,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3);(4)经过s点P与点Q第一次相遇.【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,点Q的运动速度与点P的运动速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵点Q的运动速度与点P的运动速度不相等,∴BP与CQ不是对应边,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间t=s,∴cm/s;(4)设经过x秒后点P与点Q第一次相遇.由题意,得x=3x+2×10,解得∴经过s点P与点Q第一次相遇.【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.23、(1)x+1;(1),当x=﹣1时,原式=1.【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(1)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出不等式组的整数解,从中找到符合分式的整数,代入计算可得.【详解】(1)原式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水工建筑物教学课程设计
- 石英钟 课程设计
- 八位比较器课程设计
- 数字钟课程设计加闹钟
- 2024-2030年中国石灰氮行业竞争策略及需求态势分析研究报告
- 2024-2030年中国烟碱市场销售渠道与发展机遇建议研究报告
- 2024-2030年中国泥浆搅拌机行业应用动态及未来趋势预测报告
- 2024-2030年中国榨菜泡菜酱菜腌菜行业消费状况及竞争格局分析研究报告
- 2024-2030年中国平行偶极子天线行业应用趋势与投资盈利预测报告
- 2024-2030年中国复混肥料制造行业竞争格局及发展趋势预测研究报告
- 田径大单元教学计划
- 2023计算机考研真题及答案
- 马铃薯购销合同范本
- 第3章 一元一次方程(复习课件)-人教版初中数学七年级上册
- 雨污分流管网工程施工方案
- 横河CS3000工程师培训资料
- 江苏省苏州市振华中学2023-2024学年九年级上学期期中物理试卷
- 慢性阻塞性肺疾病急性加重临床路径
- 人教版小学数学一年级上册第七单元《认识钟表》教学课件
- 《活出最乐观的自己》
- 专题20 上海高考说明文阅读技巧点睛(解析版)
评论
0/150
提交评论