咸宁市通城县2025届数学八年级第一学期期末教学质量检测试题含解析_第1页
咸宁市通城县2025届数学八年级第一学期期末教学质量检测试题含解析_第2页
咸宁市通城县2025届数学八年级第一学期期末教学质量检测试题含解析_第3页
咸宁市通城县2025届数学八年级第一学期期末教学质量检测试题含解析_第4页
咸宁市通城县2025届数学八年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

咸宁市通城县2025届数学八年级第一学期期末教学质量检测试题题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若(b≠0),则=()A.0 B. C.0或 D.1或22.一个多边形的每一个内角都等于120°,则它的内角和为()A.540° B.720° C.900° D.1080°3.以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A的面积为()A.6 B.36 C.64 D.84.函数与的部分自变量和对应函数值如下:x-4-3-2-1y-1-2-3-4x-4-3-2-1y-9-6-30当时,自变量x的取值范围是()A. B. C. D.5.已知图中的两个三角形全等,则的度数是()A.72° B.60° C.58° D.50°6.已知a=2−2,b=A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.下列因式分解正确的是()A.x2–9=(x+9)(x–9) B.9x2–4y2=(9x+4y)(9x–4y)C.x2–x+=(x−)2 D.–x2–4xy–4y2=–(x+2y)28.在中,,用尺规作图的方法在上确定一点,使,根据作图痕迹判断,符合要求的是()A. B.C. D.9.如果解关于x的分式方程=5时出现了增根,那么a的值是()A.﹣6 B.﹣3 C.6 D.310.等腰中,,用尺规作图作出线段BD,则下列结论错误的是()A. B. C. D.的周长二、填空题(每小题3分,共24分)11.已知x是的整数部分,y是的小数部分,则xy的值_____.12.已知,,则代数式的值是______________.13.已知和都是方程的解,则_______.14.如图,已知,直线分别交,于点,,平分,若,则的度数为__________.15.若分式方程=a无解,则a的值为________.16.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.17.为保证数据安全,通常会将数据经过加密的方式进行保存,例如:将一个多项式因式分解为,当时,,,将得到的三个数字按照从小到大的顺序排列得到加密数据:192021,根据上述方法.当时,多项式分解因式后形成的加密数据是______.18.如图,是中边中点,,于,于,若,则__________.三、解答题(共66分)19.(10分)已知,求实数A和B的值.20.(6分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?21.(6分)父亲两次将100斤粮食分给兄弟俩,第一次分给哥哥的粮食等于第二次分给弟弟的2倍,第二次分给哥哥的粮食是第一次分给弟弟的3倍,求两次分粮食中,哥哥、弟弟各分到多少粮食?22.(8分)如图,中,,平分交于点.求证:BC=AC+CD.23.(8分)春节即将来临,根据习俗好多家庭都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进批红灯笼和对联进行销售,已知红灯笼的进价是对联进价的2.25倍,用720元购进对联的数量比用540元购进红灯笼的数量多60件(1)对联和红灯笼的进价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼.已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个.销售一段时间后发现对联售出了总数的,红灯笼售出了总数的.为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(8分)为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)一班8.76a=b=二班8.76c=d=根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.25.(10分)阅读材料:若m2﹣2mn+2n2﹣11n+22=1,求m,n的值.解:∵m2﹣2mn+2n2﹣11n+22=1,∴(m2﹣2mn+n2)+(n2﹣11n+22)=1.∴(m﹣n)2+(n﹣2)2=1,∴m﹣n=1,n﹣2=1.∴n=2,m=2.根据你的观察,探究下面的问题:(1)已知:x2+2xy+2y2+4y+4=1,求xy的值;(2)已知:△ABC的三边长a,b,c都是正整数,且满足:a2+b2﹣16a﹣12b+111=1,求△ABC的周长的最大值;(3)已知:△ABC的三边长是a,b,c,且满足:a2+2b2+c2﹣2b(a+c)=1,试判断△ABC是什么形状的三角形并说明理由.26.(10分)建立模型:如图1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直线ED经过点B,过A作AD⊥ED于D,过C作CE⊥ED于E.则易证△ADB≌△BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角∠ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.模型应用:(1)如图2,点A(0,4),点B(3,0),△ABC是等腰直角三角形.①若∠ABC=90°,且点C在第一象限,求点C的坐标;②若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若△MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【详解】解:∵,∴a(a-b)=0,∴a=0,b=a.当a=0时,原式=0;当b=a时,原式=故选C2、B【分析】从每一个内角都等于120°可以推出每一个外角都是60°,再根据多边形的外角和是360°可求出多边形的边数,再乘以120°就是此多边形的内角和.【详解】解:,故选:B.【点睛】此题重在掌握多边形内角和与外角和的公式,能够将内角与外角灵活的转换是解题的关键.3、A【分析】根据图形知道所求的A的面积即为正方形中间的直角三角形的A所在直角边的平方,然后根据勾股定理即可求解.【详解】∵两个正方形的面积分别为8和14,且它们分别是直角三角形的一直角边和斜边的平方,∴正方形A的面积=14-8=1.故选:A.【点睛】本题主要考查勾股树问题:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.4、B【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y1=k1x+b1中y随x的增大而减小,y1=k1x+b1中y随x的增大而增大.且两个函数的交点坐标是(-1,-3).

则当x<-1时,y1>y1.

故选:B.【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.5、D【分析】根据全等三角形的性质中对应角相等,可得此组对应角为线段a和c的夹角,由此可知=50°即可.【详解】∵两个三角形全等,∴∠α=50°.故选D.【点睛】此题考查全等三角形的性质,学生不仅需要掌握全等三角形的性质,而且要准确识别图形,确定出对应角是解题的关键.6、B【解析】先根据幂的运算法则进行计算,再比较实数的大小即可.【详解】a=2b=π−2c=−11>1故选:B.【点睛】此题主要考查幂的运算,准确进行计算是解题的关键.7、D【分析】利用以及进行因式分解判断即可.【详解】A.原式=(x+3)(x–3),选项错误;B.原式=(3x+2y)(3x–2y),选项错误;C.原式=(x–)2,选项错误;D.原式=–(x2+4xy+4y2)=–(x+2y)2,选项正确.故选D.【点睛】本题主要考查了因式分解,熟练掌握相关公式是解题关键.8、D【分析】根据,可得AD=BD,进而即可得到答案.【详解】∵,又∵,∴AD=BD,∴点D是线段AB的垂直平分线与BC的交点,故选D.【点睛】本题主要考查尺规作垂直平分线以及垂直平分线的性质定理,掌握尺规作垂直平分线是解题的关键.9、A【解析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.【详解】解:去分母得:2x+a=5x﹣15,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:6+a=0,解得:a=﹣6,故选A.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10、C【解析】根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【详解】解:∵等腰△ABC中,AB=AC,∠A=36°,

∴∠ABC=∠ACB=72°,

由作图痕迹发现BD平分∠ABC,

∴∠A=∠ABD=∠DBC=36°,

∴AD=BD,故A、B正确;

∵AD≠CD,

∴S△ABD=S△BCD错误,故C错误;

△BCD的周长=BC+CD+BD=BC+AC=BC+AB,

故D正确.

故选C.【点睛】本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.二、填空题(每小题3分,共24分)11、2﹣1【分析】根据可得,x=2,y=﹣2,代入求解即可.【详解】∵x是的整数部分,∴x=2,∵y是的小数部分,∴y=﹣2,∴yx=2(﹣2)=2﹣1,故答案为2﹣1.【点睛】本题考查了无理数的混合运算问题,掌握无理数大小比较的方法以及无理数混合运算法则是解题的关键.12、15【分析】根据整式的乘法将原式展开,代入和的值即可得解.【详解】,将,代入得原式,故答案为:15.【点睛】本题主要考查了整式的乘法,熟练运用多项式乘以多项式的计算公式是解决本题的关键.13、-1【分析】根据方程的解满足方程,把解代入方程,可得二元一次方程组,解方程组,可得答案.【详解】把、分别代入得:,解得,∴.故答案为:-1.【点睛】本题考查方程的解及二元一次方程组,熟练掌握解的概念及二元一次方程组解法是解题关键.14、【分析】先由AB∥CD得出∠1+∠BEF=180°,∠2=∠BEG,再根据角平分线及∠1的度数求出∠BEG的度数即可.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG又∵∠1=50°,∴∠BEF=130°,又∵EG平分∠BEF,∴∠FEG=∠BEG=65°,∴∠2=∠BEG=65°故答案为:65°.【点睛】本题考查了角平分线的定义、平行线的性质,解题的关键是求出∠BEF的度数.15、1或-1【分析】根据分式方程无解,得到最简公分母为2求出x的值,分式方程转化为整式方程,把x的值代入计算即可.【详解】解:去分母:即:.显然a=1时,方程无解.由分式方程无解,得到x+1=2,即:x=-1.把x=-1代入整式方程:-a+1=-2a.解得:a=-1.综上:a的值为1或者-1.【点睛】本题考查了分式方程的解,需要注意在任何时候考虑分母不能够为2.16、2秒或3.5秒【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9-3t=5-t,解方程即可;②当Q运动到E和B之间时,设运动时间为t,则得:3t-9=5-t,解方程即可.【详解】∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9−3t=5−t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t−9=5−t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2秒或3.5秒.【点睛】本题是动点问题与图形的结合,分情况讨论,根据平行四边形的性质,列出关系式即可求解.17、1【分析】先将多项式分解因式,再计算当时各个因式的值,然后将得到的各因式的数字按照从小到大的顺序排列即得答案.【详解】解:,当时,,.∴多项式分解因式后形成的加密数据是:1.故答案为:1.【点睛】本题考查了多项式的因式分解,属于基本题型,正确理解题意、熟练掌握分解因式的方法是解答的关键.18、1【分析】根据直角三角形斜边上的中线等于斜边的一半得出ED=BC,FD=BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.【详解】解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,∴ED=BC,FD=BC,∴ED=FD,又∠EDF=60°,∴△EDF是等边三角形,∴ED=FD=EF=4,∴BC=2ED=1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.三、解答题(共66分)19、A=1,B=1【分析】首先对等式的右边进行通分相加,然后根据分母相同,得到分子相同.根据两个多项式相等,则其同次项的系数应当相等,得到关于A,B的方程,进行求解.【详解】∵,∴3x﹣4=(A+B)x+(﹣1A﹣B),比较两边分子的系数,,∴A=1,B=1.【点睛】掌握分式的加法运算,能够根据两个多项式相等得到关于A,B的方程.20、(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;②因为VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵VP≠VQ,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t==1.5(秒),此时VQ==4(cm/s).(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P运动了24×3=72(cm)又∵△ABC的周长为33cm,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.21、第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤【分析】设哥哥第一次分到粮食为x斤,弟弟第二次分到的粮食为y斤,根据题中给出已知条件,找到等量关系列出二元一次方程组,解方程组即可求解.【详解】设哥哥第一次分到粮食为x斤,弟弟第二次分到的粮食为y斤,依题意得:解得第一次弟弟分到:(斤)第二次哥哥分到:(斤)∴第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤故答案为:第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤.【点睛】本题考查了二元一次方程组的实际应用,找到题中等量关系列出方程组是解题的关键.22、证明见解析.【分析】如图,在线段上截取,连结,由角平分线的性质可得∠ABD=∠EBD=∠ABC,利用SAS可证明△ABD≌△EBD,即可得,,根据等腰三角形的性质可求出∠ACB=∠ABC=36°,根据三角形内角和定理及外角性质可得,即可证明CD=CE,进而可得结论.【详解】如图,在线段上截取,连结,∵平分,∴在和中,∴,∴,.∵,∴,∴,∴∴,∴∴,∴,∴.【点睛】本题考查角平分线的定义、全等三角形的判定与性质、三角形内角和定理、外角性质及等腰三角形的性质,熟练掌握相关性质和判定定理是解题关键.23、(1)对联的进价为8元/件,红灯笼的进价为18元/件;(2)商店最低打5折,才能使总的利润率不低于20%.【分析】(1)设对联的进价为x元,则红灯笼的进价为2.25x元,根据数量=总价÷单价结合用720元购进对联的数量比用540元购进红灯笼的数量多60件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设商店对剩下的商品打y折销售,根据利润=销售总额﹣进货成本结合总的利润率不低于20%,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】解:(1)设对联的进价为x元,则红灯笼的进价为2.25x元,依题意,得:,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴2.25x=18,答:对联的进价为8元/件,红灯笼的进价为18元/件;(2)设商店对剩下的商品打y折销售,依题意得:12×300×+24×200×+12××300×(1﹣)+24××200×(1﹣)﹣8×300﹣18×200≥(8×300+18×200)×20%,整理得:240y≥1200,解得:y≥5,答:商店最低打5折,才能使总的利润率不低于20%.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24、(1)补全一班竞赛成绩统计图如图所示,见解析;(2)a=9;b=9;c=8;d=10;(3)一班成绩比二班好.理由见解析.【分析】(1)设一班C等级的人数为x,根据题意列出方程求解即可;(2)根据已知数据求出中位数、众数即可;(3)根据平均数和中位数做判断即可;【详解】(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)由题可知总共有25人,则可得一班的中位数是9,众数是9,二班A级人数是11,B级人数是1,C级人数是9,D级人数是4人,故二班中位数是8,众数是10,∴a=9;b=9;c=8;d=10;(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.【点睛】本题主要考查了数据分析的知识点,准确计算是解题的关键.25、(1);(2)△ABC周长的最大值为4;(3)△ABC是等边三角形.【分析】(1)利用完全平方公式以及非负数的性质求解即可.(2)利用完全平方公式以及非负数的性质求解即可.(3)利用完全平方公式以及非负数的性质求解即可.【详解】解:(1)∵x2+2xy+2y2+4y+4=1,∴(x2+2xy+y2)+(y2+4y+4)=1∴(x+y)2+(y+2)2=1,∴x+y=1,y+2=1,∴x=2,y=﹣2,∴.(2)∵a2+b2﹣16a﹣12b+111=1∴(a2﹣16a+64)+(b2﹣12b+36)=1,∴(a﹣8)2+(b﹣6)2=1,∴a=8,b=6由三角形的三边关系可知2<c<14且c为正整数∴c的最大值是3.∴△ABC周长的最大值为4.(3)结论:△ABC是等边三角形.理由:∵a2+2b2+c2﹣2b(a+c)=1,∴(a2﹣2ab+b2)+(b2﹣2bc+c2)=1,∴(a﹣b)2+(b﹣c)2=1,∴a=b,b=c,即a=b=c,∴△ABC是等边三角形.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论