版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市德惠三中学2025届数学八上期末学业水平测试试题平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022A.甲 B.乙 C.丙 D.丁2.在化简分式的过程中,开始出现错误的步骤是()A.B.C.D.3.在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A.2a B.2b C. D.4.一个直角三角形的两条边长分别为3cm,5cm,则该三角形的第三边长为().A.4cm B.8cm C.cm D.4cm或cm5.直线y=kx+b经过第二、三、四象限,那么()A., B., C., D.,6.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.-=20 B.-=20 C.-= D.=7.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是()A.②③ B.③④ C.②③④ D.①②③④8.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤79.如图,直线a、b被直线c、d所截,若∠1=100°,∠2=80°,∠3=125°,则∠4的度数是()A.55° B.75° C.100° D.125°10.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.1011.一次函数上有两点和,则与的大小关系是()A. B. C. D.无法比较12.下列二次根式中,是最简二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.14.一组数据:3、5、8、x、6,若这组数据的极差为6,则x的值为__________.15.若分式有意义,则的取值范围是__________.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,1.则正方形D的面积是______.17.用直尺和圆规作一个角等于已知角的示意图如下,则要说明,需要说明,则这两个三角形全等的依据是________.(写出全等的简写)18.若a:b=1:3,b:c=2:5,则a:c=_____.三、解答题(共78分)19.(8分)解方程组:20.(8分)(尺规作图,保留作图痕迹,不写作法)如图,已知:△ABC(其中∠B>∠A).(1)在边AC上作点D,使∠CDB=2∠A;(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,则∠C的度数为.21.(8分)已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.22.(10分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.23.(10分)在的正方形网格中建立如图1、2所示的直角坐标系,其中格点的坐标分别是.(1)请图1中添加一个格点,使得是轴对称图形,且对称轴经过点.(2)请图2中添加一个格点,使得也是轴对称图形,且对称轴经过点.24.(10分)如图,AP,CP分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=a.(1)用a表示∠ACP;(2)求证:AB∥CD;(3)AP∥CF.求证:CF平分∠DCE.25.(12分)解方程:=-.26.如图,直线l与m分别是边AC和BC的垂直平分线,它们分别交边AB于点D和点E.(1)若,则的周长是多少?为什么?(2)若,求的度数.
参考答案一、选择题(每题4分,共48分)1、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.2、B【分析】根据题意直接将四选项与正确的解题步骤比较,即可知错误的步骤.【详解】解:∵正确的解题步骤是:,∴开始出现错误的步骤是.故选:B.【点睛】本题主要考查分式的加减法,熟练掌握分式的加减法运算法则是解题的关键.3、B【解析】利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.【详解】,,,,,,,故选B.【点睛】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.4、D【分析】根据已知的两边长,利用勾股定理求出第三边即可.注意3cm,5cm可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当3cm,5cm时两条直角边时,第三边==,当3cm,5cm分别是一斜边和一直角边时,第三边==4,所以第三边可能为4cm或cm.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.5、C【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】∵直线y=kx+b经过第二、四象限,∴k<0,又∵直线y=kx+b经过第三象限,即直线与y轴负半轴相交,∴b<0,故选C.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系:k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6、C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,
-=,
故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.7、C【分析】分别在以上四种情况下以P为圆心,PQ的长度为半径画弧,观察弧与直线AM的交点即为Q点,作出后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,所以不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,但是此时两个三角形全等,所以形状相同,所以唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以④正确.综上:②③④正确.故选C.【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q是关键.8、D【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【详解】解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式组的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤1.故选:D.【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.9、D【解析】由题意得∠1=∠5=100°,然后得出∠5+∠2=180°,证出a∥b,由平行线的性质即可得出答案.【详解】解:如图∵∠1=∠5=100°,∠2=80°,∴∠5+∠2=180°,∴a∥b,∴∠4=∠3=125°,故选:D.【点睛】本题主要考查平行线的判定及性质,掌握平行线的判定及性质是解题的关键.10、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【点睛】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.11、B【分析】由点两点(-1,y1)和(1,y1)的横坐标利用一次函数图象上点的坐标特征,可求出y1、y1的值,比较后即可得出结论.【详解】∵一次函数y=-1x+3上有两点(1,y1)和(-1019,y1),∴y1=-1×1+3=1,y1=-1×(-1019)+3=4041,∴y1<y1.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y1、y1的值是解题的关键.12、C【分析】化简得到结果,即可做出判断.【详解】A.,故不是最简二次根式;B.,故不是最简二次根式;C.是最简二次根式;D.,故不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.二、填空题(每题4分,共24分)13、1【解析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】180°-144°=36°,360°÷36°=1,∴这个多边形的边数是1,故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.14、2或1【解析】根据极差的定义先分两种情况进行讨论,当x最大时或最小时分别进行求解即可.【详解】∵数据3、5、8、x、6的极差是6,∴当x最大时:x﹣3=6,解得:x=1;当x最小时,8﹣x=6,解得:x=2,∴x的值为2或1.故答案为:2或1.【点睛】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.15、x≠1【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式有意义,∴x-1≠0,解得x≠1.故答案为:x≠1.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.16、2【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=1;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17、【分析】利用作法得到△C′O′D′和△COD的三边对应相等,从而根据”SSS“可证明△C′O′D′≌△COD,然后根据全等三角形的性质得到∠A′O′B′=∠AOB.【详解】由作法得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD,所以∠A′O′B′=∠AOB.故答案为SSS.【点睛】本题考查全等三角形的判定,作一个角等于已知角.熟练掌握作一个角等于已知角的作法并且掌握其原理是解决此题的关键.18、2∶1【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.详解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案为2:1.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.三、解答题(共78分)19、【解析】把①×3+②,消去y,求出x的值,再把求得的x的值代入①求出y的值即可.【详解】由①×3,得.③把③+②,得.解得.把代入①,得..∴原方程组的解是【点睛】本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.灵活选择合适的方法是解答本题的关键.20、(1)见解析;(2)40°.【分析】(1)作线段AB的中垂线,与AC的交点即为所求点D;
(2)由CB=CD知∠CDB=2∠A=70°,再由CD=CB知∠CDB=∠CBD=70°,根据三角形的内角和定理可得答案.【详解】解:(1)如图所示,点D即为所求.(2)∵CB=CD,∴∠ABD=∠A=35°,∴∠CDB=2∠A=70°,又∵CD=CB,∴∠CDB=∠CBD=70°,∴∠C=40°,故答案为40°.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握线段中垂线的性质和尺规作图、等腰三角形的性质、三角形的内角和定理与外角的性质.21、见解析【分析】作OD⊥AB,OE⊥AC,垂足分别为D、E,根据角平分线的性质可得OD=OE,然后根据等角对等边证出OB=OC,然后利用HL证出Rt△ODB≌Rt△OEC,可得∠ABO=∠ACO,再利用等角对等边证出AB=AC,最后根据三线合一即可证出结论.【详解】解:作OD⊥AB,OE⊥AC,垂足分别为D、E∵AO平分BAC,∴OD=OE∵∠1=∠1∴OB=OC在Rt△ODB和Rt△OEC中∴Rt△ODB≌Rt△OEC∴∠ABO=∠ACO又∵∠1=∠1∴∠ABC=∠ACB∴AB=AC∵AO平分∠BAC∴AO⊥BC【点睛】此题考查的是角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质,掌握角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质是解决此题的关键.22、(1)75°(2)证明见解析【解析】试题分析:(1)由AB=AC可得∠C=∠B=30°,可求得∠BAC,再利用角的和差可求得∠DAC;(2)由外角的性质得到∠ADC=75°,即可得到∠ADC=∠DAC,从而有AC=DC,即可得到结论.试题解析:(1)∵AB=AC,∠B=30°,∴∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)∵∠ADC=∠B+∠DAB=30°+45°=75°,∴∠ADC=∠DAC,∴AC=DC,∵AB=AC,∴AB=CD.考点:1.等腰三角形的性质;2.三角形的外角性质.23、(1)见解析;(2)见解析【分析】(1)根据轴对称的相关概念,由题意以y轴为对称轴进行作图即可得解;(2)根据轴对称的相关概念,由题意以y=x轴为对称轴进行作图即可得解.【详解】(1)如下图:则点即为所求;(2)如下图:则点D即为所求.【点睛】本题主要考查了平面直角坐标系中轴对称图形的作图,熟练掌握掌握轴对称的作图方法是解决本题的关键.24、(1)∠CAP=90°-α;(2)证明见解析;(3)证明见解析;【解析】试题分析:(1)由角平分线的定义可得∠PAC=α,在Rt△PAC中根据直角三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学力
- 抢救与急救管理制度
- 人教部编版四年级语文上册口语交际《爱护眼睛保护视力》精美课件
- 【暑假阅读】小升初非连续性文本阅读衔接讲义 专题03 说明书类(有答案解析)
- 2024年昌吉考客运从业资格证考试题目
- 2024年拉萨小型客运从业资格证理论考试答案
- 2024年苏州道路客运输从业资格证考试真题保过
- 2024年呼和浩特客车从业资格证模拟考试答题软件
- 2024年吉林客运资格证场景模拟
- 2024年福建客运从业资格证实际操作试题及答案详解
- 团结友爱和睦相处主题班会
- 期中 (试题) -2024-2025学年外研版(三起)英语六年级上册
- 2024年车路云一体化系统建设与应用指南报告
- 2025届高考语文复习:鉴赏诗歌的语言(炼字、炼句、语言风格)+课件
- 2024年企业收购委托代理协议文件版
- 统编版(2024)七年级上册道德与法治第八课《认识生命》教学设计
- 2024中国移动重庆公司社会招聘138人高频难、易错点500题模拟试题附带答案详解
- (完整版)初中道德与法治课程标准
- 2024年新人教版数学七年级上册教学课件 4.2 第2课时 去括号
- 一例登革热合并凝血功能障碍患者的个案护理20190-7
- 门诊病历书写模板全
评论
0/150
提交评论