2025届新疆生产建设兵团二中学数学八年级第一学期期末预测试题含解析_第1页
2025届新疆生产建设兵团二中学数学八年级第一学期期末预测试题含解析_第2页
2025届新疆生产建设兵团二中学数学八年级第一学期期末预测试题含解析_第3页
2025届新疆生产建设兵团二中学数学八年级第一学期期末预测试题含解析_第4页
2025届新疆生产建设兵团二中学数学八年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆生产建设兵团二中学数学八年级第一学期期末预测试题试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)22.等腰三角形的一个外角为80°,则它的底角为()A.100° B.80° C.40° D.100°或40°3.如图,,,下列结论错误的是()A. B.C. D.4.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短 C.过点O作直线a∥b D.锐角都相等吗5.如图,,,,,,点在线段上,,是等边三角形,连交于点,则的长为()A. B. C. D.6.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后过点D作一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,OC的长为半径作弧,交数轴正半轴于一点,则该点位置大致在数轴上()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间7.如图,在△ABC中,AB=BC,顶点B在y轴上,顶点C的坐标为(2,0),若一次函数y=kx+2的图象经过点A,则k的值为()A. B.- C.1 D.-18.在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个9.在下列黑体大写英文字母中,不是轴对称图形的是()A. B. C. D.10.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在、两边高线的交点处B.在、两边中线的交点处C.在、两内角平分线的交点处D.在、两边垂直平分线的交点处二、填空题(每小题3分,共24分)11.关于的分式方程的解为正数,则的取值范围是___________.12.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{2x+1,1}=x,则x=___.13.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是________(填序号)14.如图,等腰△ABC,CA=CB,△A'BC'≌△ABC,∠A'=75°,∠A'BA=β,则∠ACC'的度数为_____.(用含β的式子表示)15.计算的结果等于_______.16.如果分式有意义,那么x的取值范围是____________.17.若一次函数()与一次函数的图象关于轴对称,且交点在轴上.则这个函数的表达式为_______18.如图,△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E.若BD+AC=3a,则AC=_________.(用含a的式子表示)三、解答题(共66分)19.(10分)阅读下面的计算过程:①=②=③=④上面过程中(有或无)错误,如果有错误,请写出该步的代号.写出正确的计算过程.20.(6分)如图,直线,连接,为一动点.(1)当动点落在如图所示的位置时,连接,求证:;(2)当动点落在如图所示的位置时,连接,则之间的关系如何,你得出的结论是.(只写结果,不用写证明)21.(6分)小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.(1)图中m=_____,n=_____;(直接写出结果)(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?22.(8分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.23.(8分)如图所示,在平面直角坐标系中,△ABC各顶点的坐标分别为A(4,0),B(-1,4),C(-3,1).(1)作出△A′B′C′,使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标;(3)求△ABC的面积.24.(8分)瑞士著名数学家欧拉是18世纪数学界最杰出的人物之一,我们现在可以见到很多以欧拉来命名的常数、公式、定理,在分式中,就有这样一个欧拉公式:若,,是两两不同的数,称为欧拉分式,(1)请代入合适的值,并猜想:若,,是两两不同的数,则______;(2)证明你的猜想;(3)若,,是两两不同的数,试求的值.25.(10分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(10分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=

参考答案一、选择题(每小题3分,共30分)1、C【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.2、C【解析】试题分析:根据三角形的外角性质和等腰三角形的性质求解.解:∵等腰三角形的一个外角为80°∴相邻角为180°﹣80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:(180°﹣100°)÷2=40°.故选C.考点:等腰三角形的性质.3、D【分析】根据全等三角形的判定及性质逐一判断即可.【详解】解:在△ABE和△ACD中∴△ABE≌△ACD,故A选项正确;∴∠B=∠C,故C选项正确;∵,∴AB-AD=AC-AE∴,故B选项正确;无法证明,故D选项错误.故选D.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的判定定理和性质定理是解决此题的关键.4、B【分析】根据命题的定义对各个选项进行分析从而得到答案.【详解】A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点睛】此题主要考查学生对命题与定理的理解及掌握情况.5、B【分析】根据等边三角形,等腰直角三角形的性质和外角的性质以及“手拉手”模型,证明,可得,由已知条件得出,结合的直角三角形的性质可得的值.【详解】,,,,又,为等边三角形,,是等边三角形,所以在和中,,,,,故选:B.【点睛】考查了等腰直角三角形,等边三角形和外角性质,以及“手拉手”模型证明三角形全等,全等三角形的性质,和的直角三角形的性质的应用,注意几何综合题目的相关知识点要熟记.6、B【解析】利用勾股定理列式求出OC,再根据无理数的大小判断即可.解答:解:由勾股定理得,OC=,

∵9<13<16,

∴3<<4,

∴该点位置大致在数轴上3和4之间.

故选B.“点睛”本题考查了勾股定理,估算无理数的大小,熟记定理并求出OC的长是解题的关键.7、C【解析】先根据等腰三角形的性质求出点A的坐标,再把顶点A的坐标代入一次函数y=kx+2,求出k的值即可.【详解】解:∵AB=BC,∴△ABC是等腰三角形,∵等腰三角形ABC的顶点B在y轴上,C的坐标为(2,0),∴A(-2,0),∵一次函数y=kx+2的图象经过点A,∴0=-2k+2,解得k=1,故选C.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8、B【分析】根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.【点睛】此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.9、C【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【解析】试题解析:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.考点:角平分线的性质.二、填空题(每小题3分,共24分)11、且.【分析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解为正数,∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案为m>2且m≠1.12、x=-1或x=1【分析】根据题意,对2x+1和1的大小分类讨论,再根据题意分别列出方程即可求出结论.【详解】解:当2x+1<1,即x<0时,min{2x+1,1}=2x+1∴2x+1=x解得:x=-1;当2x+1>1,即x>0时,min{2x+1,1}=1∴x=1;综上所述:x=-1或x=1故答案为:x=-1或x=1.【点睛】此题考查的是一元一次方程的应用,掌握题意和分类讨论的数学思想是解决此题的关键.13、①②④【分析】易证△ABD≌△EBC,可得可得①②正确,再根据角平分线的性质可求得,即,根据可求得④正确.【详解】①BD为△ABC的角平分线,

在△ABD和△EBC中,

△ABD≌△EBC,

①正确;

②BD为△ABC的角平分线,,BD=BC,BE=BA,

△ABD≌△EBC

②正确;③

为等腰三角形,

,

△ABD≌△EBC,

BD为△ABC的角平分线,,而EC不垂直与BC,

③错误;④正确.故答案为:①②④.【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.14、60°β.【分析】根据全等三角形的性质得到∠A=∠A'=75°,BC'=BC,∠A'BC'=∠ABC,根据等腰三角形的性质、三角形内角和定理分别求出∠BCC'、∠ACB,结合图形计算即可.【详解】解:∵△A'BC'≌△ABC,∴∠A=∠A'=75°,BC'=BC,∠A'BC'=∠ABC,∴∠C'BC=∠A'BA=β.∵BC'=BC,∴∠BCC',∵CA=CB,∴∠ACB=180°﹣75°×2=30°,∴∠ACC'=∠BCC'﹣∠ACB=60°β.故答案为:60°β.【点睛】本题考查了全等三角形的性质、等腰三角形的性质、三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.15、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算16、x≠1【解析】∵分式有意义,∴,即.故答案为.17、【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数的图象关于x轴对称,解答即可.【详解】解:∵两函数图象交于x轴,∴0=,解得x=2,∴0=2k+b,∵y=kx+b与关于轴对称,∴b=1,∴k=,∴,故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.18、a【分析】利用线段垂直平分线的性质得出AD=BD,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC的长度.【详解】解:连接AD.

∵AB的垂直平分线交BC于D,交AB于E,

∴AD=BD,∴∠B=∠BAD=15°.∴∠ADC=30°,

又∠C=90°,∴AC=AD=BD=(3a-AC),∴AC=a.

故答案为:a.【点睛】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键.三、解答题(共66分)19、有,②,过程见解析【分析】第一步通分正确,第二步少分母,这是不正确的,分母只能通过与分子约分化去.【详解】解:有错误;②;正确的计算过程是:====【点睛】本题考查了异分母分式的加减,熟练掌握运算法则是解题的关键.20、(1)见解析(2)∠APB+∠PAC+∠PBD=360【分析】(1)延长AP交BD于M,根据三角形外角性质和平行线性质得出∠APB=∠AMB+∠PBD,∠PAC=∠AMB,代入求出即可;(2)过P作EF∥AC,根据平行线性质得出∠PAC+∠APF=180,∠PBD+∠BPF=180,即可得出答案.【详解】(1)延长AP交BD于M,如图1,∵AC∥BD,∴∠PAC=∠AMB,∵∠APB=∠AMB+∠PBD,∴∠APB=∠PAC+∠PBD;(2)∠APB+∠PAC+∠PBD=360,如图2,过P作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠PAC+∠APF=180,∠PBD+∠BPF=180,∴∠PAC+∠APF+∠PBD+∠BPF=360,∴∠APB+∠PAC+∠PBD=360,∴∠APB+∠PAC+∠PBD=360.【点睛】本题考查了平行线的性质和三角形外角性质的应用,解题的关键是熟知平行线的性质及三角形外角性质的应用.21、(1)25,1;(2)小明回家骑行速度至少是0.2千米/分.【解析】(1)根据函数图象,先求出爸爸骑共享单车的速度以及匀速步行的速度,再求出返回途中爸爸从驿站到公园入口的时间,得到m的值;然后求出爸爸从公园入口到家的时间,进而得到n的值;(2)根据小明要在爸爸到家之前赶上得到不等关系:(n﹣爸爸从驿站到家的时间﹣小明到达驿站后逗留的10分钟)×小明回家骑行的速度≥驿站与家的距离,依此列出不等式,求解即可.【详解】(1)由题意,可得爸爸骑共享单车的速度为:=0.2(千米/分),爸爸匀速步行的速度为:=0.1(千米/分),返回途中爸爸从驿站到公园入口的时间为:=5(分钟),所以m=20+5=25;爸爸从公园入口到家的时间为:=20(分钟),所以n=25+20=1.故答案为25,1;(2)设小明回家骑行速度是x千米/分,根据题意,得(1﹣25﹣10)x≥2,解得x≥0.2.答:小明回家骑行速度至少是0.2千米/分.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,路程、速度与时间关系的应用,理解题意,从图象中获取有用信息是解题的关键.22、(1)见解析;(2)12.【分析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.作BM⊥直线l于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.【详解】(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=.【点睛】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:

①由已知点出发向所给直线作垂线,并确定垂足;

②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;

③连接这些对称点,就得到原图形的轴对称图形.23、(1)见解析;(2)(4,0),(﹣1,﹣4),(﹣3,﹣1);(3)11.1.【解析】试题分析:(1)直接利用关于x轴对称点的性质,进而得出答案;(2)直接利用(1)中所画图形得出各点坐标即可;(3)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.试题解析:(1)如图所示:△A′B′C′,即为所求;(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1);(3)△ABC的面积为:7×4﹣×2×3﹣×4×1﹣×1×7=11.1.24、(1)0;(2)见解析;(3)1【分析】利用分式的基本性质进行通分化简运算.【详解】(1)当a=1,b=2,c=3时,P=0(2).(3)原式.【点睛】本题主要考查分式的基本运算,熟练掌握分式的通分、约分、化简求值是解决该问题的关键.25、(1)不成立.结论是∠BPD=∠B+∠D,证明见解析;(2);(3)360°.【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据四边形的内角和以及(2)的结论求解即可.【详解】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.作射线QP,∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;(3)在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,又∵∠AGB=∠CGF,∴∠AGB+∠C+∠D+∠F=360°,由(2)知,∠AGB=∠B+∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查的是平行线的性质,三角形的内角,三角形外角的性质,以及多边形的内角和,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.26、(1)详见解析;(2)不变,AE=CG,详见解析;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论