2025届浙江地区数学八上期末质量跟踪监视试题含解析_第1页
2025届浙江地区数学八上期末质量跟踪监视试题含解析_第2页
2025届浙江地区数学八上期末质量跟踪监视试题含解析_第3页
2025届浙江地区数学八上期末质量跟踪监视试题含解析_第4页
2025届浙江地区数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江地区数学八上期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.等腰三角形的一个内角为50°,则另外两个角的度数分别为()A.65°,65° B.50°,80° C.65°,65°或50°,80° D.50°,50°2.若a+b=3,ab=2,则a2+b2的值是()A.2.5 B.5 C.10 D.153.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A. B. C. D.4.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A., B.,C., D.,5.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°6.下列各式中,正确的有()A. B.C. D.a÷a=a7.如图,已知正方形B的面积为144,正方形C的面积为169时,那么正方形A的面积为()A.313 B.144 C.169 D.258.在中,与的平分线交于点I,过点I作交BA于点D,交AC于点E,,,,则下列说法错误的是A.和是等腰三角形 B.I为DE中点C.的周长是8 D.9.如图,,,,则度数是()A. B. C. D.10.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则的值是()A. B. C.﹣5 D.5二、填空题(每小题3分,共24分)11.等腰三角形的一个角是50°,则它的顶角等于°.12.已知与互为相反数,则__________13.如图,已知中,,,,点D为AB的中点,如果点P在线段BC上以2厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若当与全等时,则点Q运动速度可能为____厘米秒.14.如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:①和的面积相等,②,③,④,⑤,其中一定正确的答案有______________.(只填写正确的序号)15.小明家1至6月份的用水量统计如图所示,根据图中的数据可知,5月份的用水量比3月份的用水量多_____吨.16.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b、c,若a+b-c=1.s表示Rt△ABC的面积,l表示Rt△ABC的周长,则________.17.如图,在△ABC中,AB=6,AC=5,BC=9,∠BAC的角平分线AP交BC于点P,则CP的长为_____.18.若a2+a=1,则(a﹣5)(a+6)=_____.三、解答题(共66分)19.(10分)若3a=6,9b=2,求32a+4b的值;(2)已知xy=8,x﹣y=2,求代数式x3y﹣x2y2+xy3的值.20.(6分)如图所示,在平面直角坐标系xOy中,已知点(1)在图作出关于y轴的称图形(2)若将向右移2个单位得到,则点A的对应点的坐标是

.21.(6分)合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?22.(8分)先化简,再求值:(﹣1)÷,其中x=223.(8分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用为5500元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙合做来完成,则该工程施工费用是多少?24.(8分)在△ABC中,∠CAB=45°,BD⊥AC于点D,AE⊥BC于点E,DF⊥AB于点F,AE与DF交于点G,连接BG.(1)求证:AG=BG;(2)已知AG=5,BE=4,求AE的长.25.(10分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).若点M,N关于y轴对称,求(4a+b)2019的值.26.(10分)如图,在平面直角坐标系中,三个顶点坐标分别为,,.(1)关于轴对称的图形(其中,,分别是,,的对称点),请写出点,,的坐标;(2)若直线过点,且直线轴,请在图中画出关于直线对称的图形(其中,,分别是,,的对称点,不写画法),并写出点,,的坐标;

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据分类讨论已知角是顶角还是底角,进行分析,从而得到答案【详解】解:当已知角是底角时,另外两个角分别为:50°,80°;

当已知角是顶角时,另外两个角分别是:65°,65°.

故应选C.2、B【详解】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2-2ab=32-2×2=1.故选B.3、A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点睛】本题考查二元一次方程组的实际应用,属于和差倍分问题,只需要找准数量间的关系,难度较小.4、D【分析】分别利用平行四边形的判定方法判断得出即可.【详解】A、∵AB∥CD,∴∠DAB+∠ADC=180°,而,∴∠ADC+∠BCD=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故此选项不合题意;D、AB=DC,AD∥BC无法得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.【点睛】此题主要考查了平行四边形的判定,正确把握判定方法是解题关键.5、D【分析】根据SAS即可证明△ABD≌△ACE,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【详解】∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,故A正确;∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°.∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故B正确.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故C正确.∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故D错误.故选D.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6、C【分析】A.根据合并同类项法则,a3与a2不是同类项不能合并即可得A选项不正确;

B.根据同底数幂乘法法则,即可得B选项不正确;

C.根据积的乘方与幂的乘方,C选项正确;

D.根据同底数幂除法,底数不变,指数相减即可得D选项不正确.【详解】解:A.不是同类项,不能合并,故A选项不正确;B.,故B选项不正确;C.,故C选项正确;D.a÷a=a6,故D选项不正确.故选:C.【点睛】本题考查了合并同类项、同底数幂乘除法、幂的乘方和积的乘方,解决本题的关键是熟练运用这些法则.7、D【分析】设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,利用勾股定理即可解答.【详解】设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,所以,故,即.故选:D8、B【解析】由角平分线以及平行线的性质可以得到等角,从而可以判定和是等腰三角形,所以,,的周长被转化为的两边AB和AC的和,即求得的周长为1.【详解】解:平分,

同理,.

和是等腰三角形;

的周长;

故选项A,C,D正确,

故选:B.

【点睛】考查了等腰三角形的性质与判定以及角平分线的定义此题难度适中,注意掌握数形结合思想与转化思想的应用.9、C【分析】延长BC交AD于点E,根据三角形外角的性质可求得∠BED=110°,再根据三角形外角的性质得∠BCD=∠BED+∠D,从而可求得∠D的度数.【详解】延长BC交AD于点E,如图所示,∵∠BED=∠B+∠A,且,,∴∠BED=80°+30°=110°,又∵∠BCD=∠BED+∠D,∴∠D=∠BCD-∠BED=130°-110°=20°.故选:C.【点睛】此题主要考查了三角形外角的性质,熟练掌握三角形外角的性质是解此题的关键.10、C【分析】直接利用关于轴对称点的性质得出,的值,进而得出答案.【详解】∵点P(,3)、Q(-2,)关于轴对称,

∴,,

则.

故选:C.【点睛】本题主要考查了关于,轴对称点的性质,正确得出,的值是解题关键.注意:关于轴对称的点,纵坐标相同,横坐标互为相反数.二、填空题(每小题3分,共24分)11、50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【详解】(1)当50°为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=.故答案为:50°或.考点:等腰三角形的性质.12、-8【分析】由题意根据相反数的性质即互为相反数的两数之和为0,进行分析计算即可.【详解】解:∵与互为相反数,∴,解得.故答案为:-8.【点睛】本题考查相反数的性质,熟练掌握相反数的性质即互为相反数的两数之和为0进行分析是解题的关键.13、2或【分析】,表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【详解】,,点D为AB的中点,,设点P、Q的运动时间为t,则,当时,,解得:,则,故点Q的运动速度为:厘米秒;当时,,,秒.故点Q的运动速度为厘米秒.故答案为2或厘米秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.14、①③④⑤【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确;利用“SAS”证明③△BDF≌△CDE正确,根据全等三角形对应边相等,证明⑤正确,根据全等三角形对应角相等得∠F=∠DEF,再根据内错角相等,两直线平行可得④正确.【详解】解:由题意得BD=CD,点A到BD,CD的距离相等∴△ABD和△ACD的面积相等,故①正确;虽然已知AD为△ABC的中线,但是推不出来∠BAD和∠CAD一定相等,故②不正确;在△BDF和△CDE中,∴△BDF≌△CDE,故③正确;∴CE=BF,故⑤正确;∴∠F=∠DEF∴BF∥CE,故④正确;故答案为①③④⑤.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形面积相等,熟练掌握三角形判定的方法并准确识图是解题的关键.全等三角形的判定:SSS;SAS;ASA;AAS;H.L;全等三角形的性质:全等三角形对应边相等,对应角相等.15、1【分析】根据折线统计图给出的数据进行相减即可.【详解】解:由折线统计图知,5月份用的水量是6吨,1月份用的水量是1吨,则5月份的用水量比1月份的用水量多1吨;故答案为1.【点睛】本题主要考查折线统计图,解题的关键是根据折线统计图得出具体的数据.16、1【分析】已知a+b-c=1,△ABC是直角三角形,将s=,l=a+b+c用含c的代数式表示出来,再求解即可.【详解】∵a+b-c=1∴a+b=1+c∴(a+b)2=a2+2ab+b2=c2+8c+16又∵a2+b2=c2∴2ab=8c+16∴s==2c+1l=a+b+c=2c+1∴1故答案为:1【点睛】本题考查了勾股定理的应用,完全平方式的简单运算,直角三角形面积和周长计算方法.17、.【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出,从而得到,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是∠BAC的角平分线,∴PM=PN,∴,设A到BC距离为h,则,∵PB+PC=BC=9,∴CP=9×=,故答案为:.【点睛】本题主要考查三角形的角平分线的性质,结合面积法,推出,是解题的关键.18、﹣1【分析】直接利用多项式乘法化简进而把已知代入求出答案.【详解】解:∵a2+a=1,∴=1−30=−1,故答案为:−1.【点睛】本题考查了整式的化简求值,属于基础题,,解题的关键是将整式化简成最简形式.三、解答题(共66分)19、(1)144;(2)1.【解析】试题分析:(1)直接利用同底数幂的乘法运算法则结合幂的乘方运算法则化简求出答案;(2)首先提取公因式xy再利用完全平方公式分解因式,进而将已知代入求出答案.解:(1)∵3a=6,9b=2,∴32a+4b=32a×34b=(3a)2×(32b)2=36×4=144;(2)∵xy=8,x﹣y=2,∴原式=xy(x2﹣2xy+y2)=xy(x﹣y)2=×8×22=1.考点:提公因式法与公式法的综合运用;同底数幂的乘法;幂的乘方与积的乘方.20、(1)作图见解析;(2)(1,2)【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C向右平移2个单位的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′的坐标.【详解】(1)△A1B1C1如图所示;(2)△A′B′C′如图所示,A′(1,2);【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21、(1)乙队单独做需要2天完成任务;(2)y=2﹣x,甲队实际做了5天,乙队实际做了6天.【分析】(1)根据题意,甲工作20天完成的工作量+乙工作50天完成的工作量=1.(2)根据甲完成的工作量+乙完成的工作量=1得出x与y的关系式;根据x、y的取值范围得不等式,求整数解.【详解】解:(1)设乙队单独做需要x天完成任务.根据题意得.解得x=2.经检验x=2是原方程的解.答:乙队单独做需要2天完成任务.(2)根据题意得.整理得y=2﹣x.∵y<3,∴2﹣x<3.解得x>4.又∵x<15且为整数,∴x=13或5.当x=13时,y不是整数,所以x=13不符合题意,舍去.当x=5时,y=2﹣35=6.答:甲队实际做了5天,乙队实际做了6天.【点睛】此题考查分式方程的应用,二元一次方程的应用,根据题意找到等量关系是解题的关键.22、-1【分析】先对括号内的式子进行通分,再将除法转化为乘法,并对分子、分母因式分解,最后约分即可得到最简形式1-x;接下来将x=2代入化简后的式子中进行计算即可求得答案.【详解】解:原式==﹣x+1当x=2时原式=﹣2+1=﹣1.【点睛】本题考查分式的混合运算,求代数式的值.在对分式进行化简时,先观察分式的特点,运用合适的运算法则进行化简.23、(1)这项工程的规定时间是30天;(2)该工程的施工费用为153000元【分析】(1)设这项工程的规定时间是x天,根据工程问题的等量关系列分式方程求解;(2)通过第一问求出的甲、乙单独完成的时间,算出合作需要的时间,乘以每天的费用得到总费用.【详解】解:(1)设这项工程的规定时间是x天,根据题意得:,解得,经检验是方程的解,答:这项工程的规定时间是30天;(2)该工程由甲、乙合做完

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论