版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届潍坊市数学八上期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.分式的值为,则的值为()A. B. C. D.无法确定2.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.8B.10C.8或10D.63.下列描述不能确定具体位置的是()A.某影剧院排号 B.新华东路号C.北纬度,东经度 D.南偏西度4.解分式方程,下列四步中,错误的一步是()A.方程两边分式的最简公分母是x2-1B.方程两边都乘以(x2一1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程得:x=1D.原方程的解为:x=15.如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E6.如图①是一直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.cm C.cm D.3cm7.如果中不含的一次项,则()A. B. C. D.8.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD9.下列各式的变形中,正确的是()A. B. C. D.10.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段、分别表示小敏、小聪离B地的距离与已用时间之间的关系,则小敏、小聪行走的速度分别是A.和 B.和C.和 D.和二、填空题(每小题3分,共24分)11.如图,已知平分,,,,,则的长为______.12.如图,等边的边长为,、分别是、上的点,将沿直线折叠,点落在点处,且点在外部,则阴影部分图形的周长为__________.13.如图,,平分,为上一点,交于点,于,,则_____.14.若,,则________.15.计算的结果为________.16.墨烯(Graphene)是人类已知强度最高的物质.据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学计数法表示为_______.17.分解因式:a3-a=18.等腰三角形的两边长分别为2和4,则其周长为_____.三、解答题(共66分)19.(10分)已知:.求作:,使≌.(要求:不写做法,但保留作图痕迹)20.(6分)定义:如果三角形某一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)如图1,在中,,AB=,AC=.求证:是“好玩三角形”;(2)如图2,若等腰三角形是“好玩三角形”,DE=DF=20,求EF的长.21.(6分)如图,四边形ABCD与四边形DEFG都是正方形,设AB=a,DG=b(a>b).(1)写出AG的长度(用含字母a、b的式子表示);(2)观察图形,请你用两种不同的方法表示图形中阴影部分的面积,此时,你能获得一个因式分解公式,请将这个公式写出来;(3)如果正方形ABCD的边长比正方形DEFG的边长多2cm,它们的面积相差20cm2,试利用(2)中的公式,求a、b的值.22.(8分)如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.(1)求点的坐标;(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.23.(8分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17=,12×14﹣6×20=,不难发现,结果都是.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.24.(8分)猜想与证明:小强想证明下面的问题:“有两个角(图中的和)相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的和边.(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法并在备用图上恢复原来的样子.(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)25.(10分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量.26.(10分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据分式的值等于1时,分子等于1且分母不为1,即可解出的值.【详解】解:分式的值为1,且.故选:B.【点睛】本题是已知分式的值求未知数的值,这里注意到分式有意义,分母不为1.2、B【解析】题目给出等腰三角形有两条边长为2和4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当2是腰时,2,2,4不能组成三角形,应舍去;当4是腰时,4,4,2能够组成三角形.∴周长为10cm,故选B.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3、D【解析】根据平面内的点与有序实数对一一对应分别对各选项进行判断.【详解】解:A、某影剧院排号能确定具体位置;B、新华东路号,能确定具体位置;C、北纬度,东经度,能确定具体位置;D、南偏西度不能确定具体位置;故选D.【点睛】本题考查了利用坐标确定位置,是基础题,明确位置的确定需要两个因素是解题的关键.4、D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:分式方程的最简公分母为,故A选项正确;方程两边乘以(x−1)(x+1),得整式方程2(x−1)+3(x+1)=6,故B选项正确;解得:x=1,故C选项正确;
经检验x=1是增根,分式方程无解.故D选项错误;
故选D.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5、B【解析】∵∠1=∠2,
∴∠1+∠EAB=∠2+∠EAB,
∴∠CAB=∠DAE,
A、添加AB=AE可利用SAS定理判定△ABC≌△AED,故此选项符合题意;
B、添加CB=DE不能判定△ABC≌△AED,故此选项符合题意;
C、添加∠C=∠D可利用ASA定理判定△ABC≌△AED,故此选项符合题意;
D、添加∠B=∠E可利用AAS定理判定△ABC≌△AED,故此选项符合题意;
故选B.【点睛】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、A【解析】因为在直角三角形中,∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:故得:DB=,,根据折叠的性质得:,故△EDB为直角三角形,又因为,故DE=DBtan30°=cm,故答案选A.7、A【分析】利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.【详解】解:原式=x2+(m-5)x-5m,
由结果中不含x的一次项,得到m-5=0,
解得:m=5,
故选:A【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8、D【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,
∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,
∴△OMN是等边三角形,
∴∠MON=60°,
∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON,
∴∠OCD=∠OCM=,
∴∠MCD=,
又∠CMN=∠AON=∠COD,∴∠MCD+∠CMN=180°,
∴MN∥CD,故C选项正确;
∵MC+CD+DN>MN,且CM=CD=DN,
∴3CD>MN,故D选项错误;
故选D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.9、C【分析】根据分式的性质逐项进行判断即可得.【详解】A中的x不是分子、分母的因式,故A错误;B、分子、分母乘的数不同,故B错误;C、(a≠0),故C正确;D、分式的分子、分母同时减去同一个非0的a,分式的值改变,故D错误,故选C.【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.10、D【解析】设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h;设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h,故选D.二、填空题(每小题3分,共24分)11、【分析】根据角平分线的性质得出,然后根据即可求出CD的长,则DE的长可求.【详解】∵,∴∵平分,,∴故答案为:3cm.【点睛】本题主要考查角平分线的性质,掌握角平分线的性质是解题的关键.12、3【分析】根据折叠的性质可得,,则阴影部分图形的周长即可转化为等边的周长.【详解】解:由折叠性质可得,,所以.故答案为:3.【点睛】本题结合图形的周长考查了折叠的性质,观察图形,熟练掌握折叠的性质是解答关键.13、【分析】过P作PF⊥OB于F,根据角平分线的定义可得∠AOC=∠BOC=15°,根据平行线的性质可得∠DPO=∠AOP,从而可得PD=OD,再根据30度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.【详解】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,又∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线且PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.
故答案为:2cm.【点睛】此题主要考查:(1)含30°度的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半;(2)角平分线的性质:角的平分线上的点到角的两边的距离相等.此题难易程度适中,是一道很典型的题目.14、1【分析】根据同底数幂的除法法则,用除以,求出的值是多少即可.【详解】解:.故答案为:1.【点睛】此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.15、【分析】先把分式进行整理,然后进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则进行解题.16、【分析】根据绝对值较小的数用科学记数法表示的一般形式是(n为正整数),其中n由原数左边第一个不为0的数左边所有0的个数决定,由此易用科学记数法表示出0.1.【详解】∵绝对值较小的数的科学记数法的表示为(n为正整数),且0.1中1左边一共有个0∴n=-6∴0.1=【点睛】本题考查的知识点是科学记数法,掌握绝对值较小的数如科学记数法表示时10的指数与原数中左边第一个不为0的数的左边所有0的个数的关系是关键.17、【解析】a3-a=a(a2-1)=18、10【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【详解】①当2为腰时,另两边为2、4,2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4,2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【点睛】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.三、解答题(共66分)19、见解析【分析】作射线,在射线上截取,然后分别以、为圆心,以、BC为半径画弧,两弧交于点,连接、.则即为所求.【详解】解:如图,即为所求.【点睛】本题考查了利用全等三角形的判定进行作图,属于常见题型,熟练掌握全等三角形的的判定和基本的尺规作图方法是解题关键.20、(1)证明见解析;(2)或.【分析】(1)根据勾股定理求得BC,作BC边上的中线AD,利用勾股定理求得AD的长度,得出AD=BC,从而可证得是“好玩三角形”;(2)分EF边上的中线等于和以DF边上的中线等于DF两种情况讨论,画出图形,利用勾股定理即可解得EF;【详解】解:(1)∵在中,,AB=,AC=,∴,如下图,作BC边上的中线AD,根据勾股定理,.∴AD=BC,∴是“好玩三角形”;(2)如下图,若,则,作,∴(三线合一),在Rt△DNE中,根据勾股定理,在Rt△ENF中,根据勾股定理,,如下图,若DH=EF,∵DH为中线,DE=DF,∴,在Rt△DEH中,根据勾股定理,,即,解得即综上所述,或.【点睛】本题考查勾股定理,等腰三角形的性质.能熟练掌握勾股定理,利用勾股定理解直角三角形是解题关键.(2)中注意分类讨论.21、(1)a-b;(2);(3)a=6,b=4【分析】(1)根据正方形的性质和即可求出AG的长度;(2)用两种不同的方法表示图形中阴影部分的面积:①求长为,宽为的矩形的面积;②通过可得阴影部分面积=四边形ABCD的面积-四边形DEFG的面积,可得;(3)根据正方形ABCD的边长比正方形DEFG的边长多2cm,它们的面积相差20cm2可得,代入原式并联立方程即可求出a、b的值.【详解】(1)∵四边形ABCD与四边形DEFG都是正方形,设AB=a,DG=b(a>b)∴∴(2)由题意得∵∴∴(3)∵正方形ABCD的边长比正方形DEFG的边长多2cm,它们的面积相差20cm2∴将代入中解得联立得解得.【点睛】本题考查了平方差公式的证明以及应用,掌握平方差公式的性质以及应用是解题的关键.22、(1)C(4,0);(2);(3).【分析】(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案.【详解】(1)∵点、关于轴对称,∴,∴,∵,∴为等边三角形,∴,∴,∴点C的坐标为:;(2)连接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵点到的距离为,∴,∴,∴,延长交于点,过点作轴于点,连接、,∵为的角平分线,为等边三角形,∴,,∵,,∴,∴,设,在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.23、(1)1,1,1;(2)证明见解析.【分析】(1)直接利用已知数据计算求出即可;(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7,列式计算即可得出结论.【详解】(1)9×11﹣3×17=1,12×14﹣6×20=1,不难发现,结果都是:1.故答案为:1,1,1.(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7则(x﹣1)·(x+1)﹣(x﹣7)·(x+7)===1.【点睛】本题考查了整式的混合运算,正确发现数字之间的变化规律是解答本题的关键.24、(1)能,具体见解析;(2)证明见解析.【分析】(1)方法1:量出∠C的大小;作∠B=∠C;则∠B的一条边和∠C的一条边的延长线交于点A;方法2:作边BC的垂直平分线与∠C的另一边的延长线交于点A,连接AB即可;方法3:将长方形纸片对折使点B和点C重合,找到∠C的另一边的延长线与折痕的交点A,连接AB即可;(2)证法1:作∠A的平分线AD,交BC与点D,利用AAS即可证出△ABD≌△ACD,从而得出AB=AC,根据等腰三角形的定义即可得出结论;证法2:过A作AD⊥BC于D,利用AAS即可证出△ABD≌△ACD,从而得出AB=AC,根据等腰三角形的定义即可得出结论.【详解】解:(1)方法1:量出∠C的大小;作∠B=∠C;则∠B的一条边和∠C的一条边的延长线交于点A.如下图所示:△ABC即为所求方法2:作边BC的垂直平分线与∠C的另一边的延长线交于点A,连接AB,如下图所示:△ABC即为所求.方法3:如图,将长方形纸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论