版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省农安县三宝中学2025届数学八年级第一学期期末监测试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于一次函数,下列说法正确的是()A.它的图象经过点 B.它的图象与直线平行C.随的增大而增大 D.当时,随的增大而减小2.下列选项中最简分式是()A. B. C. D.3.若是完全平方式,则的值为()A.-5或7 B. C.13或-11 D.11或-134.如图,在△ABC中,点D是∠ABC和∠ACB的角平分线的交点,∠A=80°,∠ABD=30°,则∠DCB为()A.25° B.20° C.15° D.10°5.如图,在中,,,于点,的平分线分别交、于、两点,为的中点,的延长线交于点,连接,下列结论:①为等腰三角形;②;③;④.其中正确的结论有()A.个 B.个 C.个 D.个6.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°7.下列一次函数中,y的值随着x值的增大而减小的是().A.y=x B.y=-x C.y=x+1 D.y=x-18.一个正比例函数的图象过点(2,﹣3),它的表达式为()A. B. C. D.9.若分式有意义,则a的取值范围是()A.a=0 B.a="1" C.a≠﹣1 D.a≠010.下列运算正确的是()A.(﹣2xy3)2=4x2y5 B.(﹣2x+1)(﹣1﹣2x)=4x2﹣1C.(x﹣2y)2=x2﹣2xy+4y2 D.(a﹣b)(a+c)=a2﹣bc二、填空题(每小题3分,共24分)11.计算:6x2÷2x=.12.函数中,自变量x的取值范围是.13.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为__________.14.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是_____15.如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为__________
.
16.已知,、、是的三边长,若,则是_________.17.如图,已知CA=BD判定△ABD≌△DCA时,还需添加的条件是__________.18.化简:=______.三、解答题(共66分)19.(10分)(1)问题发现:如图1,和均为等边三角形,点在的延长线上,连接,求证:.(2)类比探究:如图2,和均为等腰直角三角形,,点在边的延长线上,连接.请判断:①的度数为_________.②线段之间的数量关系是_________.(3)问题解决:在(2)中,如果,求线段的长.20.(6分)如图,,,于点.求证:.21.(6分)先阅读后作答:我们已经知道.根据几何图形的面积可以说明完全平方公式,实际上还有一些等式也是可以用这种公式加以说明.例如勾股定理a2+b2=c2就可以用如图的面积关系来说明.(1)根据图2写出一个等式:;(2)已知等式,请你画出一个相应的几何图形加以说明.22.(8分)自2019年11月20日零时起,大西高铁车站开始试点电子客票业务,旅客购票乘车更加便捷.大西高铁客运专线是国家《中长期铁路网规划》中的重要组成部分,它的建成将意味着今后山西人去西安旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车.已知高铁线路中从A地到某市的高铁行驶路程是400km,普通列车的行驶路程是高铁行驶路程的1.3倍,若高铁的平均速度(km/h)是普通列车平均速度(km/h)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h,求普通列车和高铁的平均速度.23.(8分)我们知道,假分数可以化为整数与真分数的和的形式.例如:,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,⋯⋯这样的分式是假分式;像,,⋯⋯这样的分式是真分式.类似的,假分式也可以化为整数与真分式的和的形式.例如:;;或(1)分式是分式(填“真”或“假”)(2)将分式化为整式与真分式的和的形式;(3)如果分式的值为整数,求的整数值.24.(8分)(1)已知的立方根为,的算术平方根为,最大负整数是,则_________,__________,_________;(2)将(1)中求出的每个数表示在数轴上.(3)用“”将(1)中的每个数连接起来.25.(10分)如图,在平面直角坐标系中,点为坐标原点,的顶点、的坐标分别为,,并且满足,.(1)求、两点的坐标.(2)把沿着轴折叠得到,动点从点出发沿射线以每秒个单位的速度运动.设点的运动时间为秒,的面积为,请用含有的式子表示.26.(10分)在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据一次函数图象上点的坐标特征、一次函数的性质判断即可.【详解】A、当时,,
∴点(1,-2)不在一次函数的图象上,A不符合题意;
B、∵,它的图象与直线不平行,B不符合题意;
C、∵<0,
∴y随x的增大而减小,C不符合题意;
D、∵<0,
∴y随x的增大而减小,D符合题意.
故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数图象与系数的关系,逐一分析四个选项的正误是解题的关键.2、A【解析】一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.【详解】A.,是最简分式;B.,不是最简分式;C.=,不是最简分式;D.=3x+1,不是最简分式.故选:A【点睛】本题考核知识点:最简分式.解题关键点:理解最简分式的意义.3、C【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵9x2-2(k-1)x+16=(3x)2-2(k-1)x+42,
∵9x2-2(k-1)x+16是完全平方式,∴-2(k-1)x=±2×3x×4,
解得k=13或k=-1.
故选:C.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4、B【分析】由BD是∠ABC的角平分线,可得∠ABC=2∠ABD=60°;再根据三角形的内角和求得∠ACB=40°;再由角平分线的定义确定∠DCB的大小即可.【详解】解:∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=2×30°=60°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣80°﹣60°=40°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,故选B.【点睛】本题考查了三角形的内角和和三角形角平分线的相关知识,解答本题的关键在于所学知识的活学活用.5、D【分析】①由等腰直角三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质可得到∠AEF=∠AFE,可判断△AEF为等腰三角形,于是可对①进行判断;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断②③;连接EN,只要证明△ABE≌△NBE,即可推出∠ENB=∠EAB=90°,由此可知判断④.【详解】解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,∴∠BAD=∠CAD=∠C=45°,BD=AD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,∴∠AEF=∠AFE,∴AF=AE,即△AEF为等腰三角形,所以①正确;∵为的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°−67.5°=22.5°=∠MBN,在△FBD和△NAD中,∴△FBD≌△NAD(ASA),∴DF=DN,AN=BF,所以②③正确;∵AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC,故④正确,故选:D.【点睛】本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.6、A【分析】由于点C关于直线MN的对称点是B,所以当三点在同一直线上时,的值最小.【详解】由题意知,当B.
P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴【点睛】考查轴对称-最短路线问题,找出点C关于直线MN的对称点是B,根据两点之间,线段最短求解即可.7、B【分析】根据一次函数的性质依次分析各项即可.【详解】解:A、C、D中,y的值随着x值的增大而增大,不符合题意;B、,y的值随着x值的增大而减小,本选项符合题意.故选B.【点睛】本题考查的是一次函数的性质,解答本题的关键是熟练掌握一次函数的性质:当时,y的值随着x值的增大而增大;当时,y的值随着x值的增大而减小.8、A【分析】根据待定系数法求解即可.【详解】解:设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.【点睛】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.9、C【解析】分式分母不为0的条件,要使在实数范围内有意义,必须.故选C10、B【解析】试题解析:A、结果是故本选项不符合题意;B、结果是故本选项符合题意;C、结果是故本选项不符合题意;D、结果是,故本选项不符合题意;故选B.二、填空题(每小题3分,共24分)11、3x.【解析】试题解析:6x2÷2x=3x.考点:单项式除以单项式.12、.【解析】∵在实数范围内有意义,∴∴故答案为13、20°【分析】根据可得出,再利用三角形外角的性质得出,然后利用得出,最后利用三角形内角和即可求出答案.【详解】故答案为:20°.【点睛】本题主要考查等腰三角形的性质及三角形外角的性质,内角和定理,掌握等腰三角形的性质是解题的关键.14、1【分析】根据角平分线的性质可得,点P到AB的距离=PE=1.【详解】解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=1,
∴点P到AB的距离=PE=1.
故答案为:1.【点睛】本题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.15、7.5【解析】试题解析:根据题意,阴影部分的面积为三角形面积的一半,
阴影部分面积为:故答案为:16、等腰直角三角形【分析】首先根据题意由非负数的性质可得:a-b=0,a2+b2-c2=0,进而得到a=b,a2+b2=c2,根据勾股定理逆定理可得△ABC的形状为等腰直角三角形.【详解】解:∵|a-b|+|a2+b2-c2|=0,
∴a-b=0,a2+b2-c2=0,
解得:a=b,a2+b2=c2,
∴△ABC是等腰直角三角形.
故答案为:等腰直角三角形.【点睛】本题考查勾股定理逆定理以及非负数的性质,解题关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.17、AB=CD【分析】条件是AB=CD,理由是根据全等三角形的判定定理SSS即可推出△ABD≌△DCA.【详解】解:已知CA=BD,AD=AD∴要使△ABD≌△DCA则AB=CD即可利用SSS推出△ABD≌△DCA故答案为AB=CD.【点睛】本题主要考查对全等三角形的判定定理的理解和掌握,掌握三角形的判定定理是解题的关键.18、.【分析】按照二次根式的性质化简二次根式即可.【详解】解:.故答案为:.【点睛】本题考查了二次根式的化简,熟悉相关性质是解题的关键.三、解答题(共66分)19、(1)见解析;(2)①,②;(3)【分析】(1)根据等边三角形的性质得到AB=AC=BC,∠BAC=60°,AD=AE,∠DAE=60°,利用等量代换得∠BAD=∠CAE,则可根据“SAS”判断△ABD≌△ACE;(2)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠CAE,AD=AE,根据全等三角形的性质得到∠ACE=∠B=45°,BD=CE,等量代换即可得到结论;(3)先证明△CDE是直角三角形,再计算BC=2,从而可得CE=3,再运用勾股定理可得DE的长.【详解】(1)证明:和是等边三角形,且,即在和中(2)∵和均为等腰直角三角形,∴AB=AC,∠BAC=∠DAE,AD=AE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴,∴∠ACE=∠B=45°,BD=CE,即BC+CD=CE,故答案为:①;②(3)由(2)知:又,,在中,,又,由(2)得在中,则线段的长是.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质.20、证明见解析.【分析】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,,所以得∠C=∠2,从而证得AB∥CD.【详解】证明:∵BE⊥FD,
∴∠EGD=90°,
∴∠1+∠D=90°,
∵∠2+∠D=90°,
∴∠1=∠2,
已知,
∴∠C=∠2,
∴AB∥CD.【点睛】本题考查的是平行线的判定,解题关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.21、(1);(2)见解析【分析】(1)根据图2中大正方形的面积的两种算法,写出等式即可;
(2)根据已知等式得出相应的图形即可.【详解】(1)根据图2得:;
故答案为:;(2)等式可以用以下图形面积关系说明:大长方形的面积可以表示为:长宽,大长方形的面积也可以表示为:一个正方形的面积+1个小长方形的面积-2个小长方形的面积,∴.【点睛】本题考查了多项式乘多项式,正确利用图形结合面积求出是解题关键.22、普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【分析】由高铁行驶路程×1.3即可求出普通列车的行驶路程;设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,根据乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h列出分式方程即可求解。【详解】解:普通列车的行驶路程为:400×1.3=520(km).设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,则根据题意得:,解得x=100,经检验,x=100是原分式方程的解,且符合题意.则高铁的平均速度是100×2.5=250(km/h).答:普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【点睛】本题主要考查分式方程的应用,解题的关键是正确解读题意,设出未知数,根据等量关系列出分式方程.23、(1)真;(2);(1)x=0或2或-1或1【分析】(1)根据新定义和分子、分母的次数即可判断;(2)根据例题的变形方法,即可得出结论;(1)先根据例题的变形方法,将原分式化为整式与真分式的和的形式,然后根据式子的特征即可得出结论.【详解】解:(1)∵分子8的次数为0,分母的次数为1∴分式是真分式,故答案为:真;(2)根据例题的变形方法:故答案为:;(1)∵分式的值为整数,∴也必须为整数∵x也为整数∴或解得:x=0或2或-1或1.【点睛】此题考查的是与分式有关的新定义类问题、整式次数的判定和分式的相关运算,根据新定义及例题的变形方法解决相关问题是解决此题的关键.24、(1)-4,2,-1;(2)见解析;(2)-4<-1<2【分析】(1)根据立方根的定义,算术平方根的定义和最大负整数求出即可;(2)把各个数在数轴上表示出来即可;(2)根据实数的大小比较法则比较即可.【详解】(1)∵﹣64的立方根为a,9的算术平方根为b,最大负整数是c,∴a=-4,b=2,c=-1.故答案为:-4,2,-1;(2)在数轴上表示为:(2)-4<-1<2.【点睛】本题考查了算术平方根,立方根,正数和负数,数轴和实数的大小比较等知识点,能求出各数是解答本题的关键.25、(1)A(0,4),B(-3,0);(2)①当点P在线段BC上时,;②当点P在线段BC延长线上时,【分析】(1)将代数式化简,利用非负性质求出a、b的值即可求出A、B的坐标.(2)先求出C点坐标,过点P作PM⊥y轴,用t表示PM的长度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论